MacLochlainns Weblog

Michael McLaughlin's Technical Blog

Site Admin

Archive for the ‘pl/sql’ Category

PL/pgSQL Coupled Loops

without comments

I love a challenge. A loyal Oracle PL/SQL developer said PL/pgSQL couldn’t support coupled loops and user-defined lists. Part true and part false. It’s true PL/pgSQL couldn’t support user-defined lists because it supports arrays. It’s false because PL/pgSQL supports an ARRAY_APPEND function that lets you manage arrays like Java’s ArrayList class.

Anyway, without further ado. You only need to create one data type because PL/pgSQL supports natural array syntax, like Java, C#, and other languages and doesn’t adhere rigidly to the Information Definition Language (IDL) standard that Oracle imposes. Oracle requires creating an Attribute Data Type (ADT) for the string collections, which you can avoid in PL/pgSQL.

You do need to create a record structure type, like:

/* Create a lyric object type. */
CREATE TYPE lyric AS
( day   VARCHAR(8)
, gift  VARCHAR(24));

You can build a function to accept an array of strings and an array of record structures that returns a new array constructed from parts of the two input arrays. The function also compares and matches the two arrays before returning an array that combines strings for a songs lyrics. While the example uses the ever boring 12 Days of Christmas, I’d love another for examples. It just needs to use this type of repetitive structure. If you have one that you would like to share let me know.

The twelve_days function is:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
CREATE FUNCTION twelve_days
  ( IN pv_days   VARCHAR(8)[]
  , IN pv_gifts  LYRIC[] ) RETURNS VARCHAR[] AS
$$  
DECLARE 
  /* Initialize the collection of lyrics. */
  lv_retval  VARCHAR(36)[114];
BEGIN
  /* Read forward through the days. */
  FOR i IN 1..ARRAY_LENGTH(pv_days,1) LOOP
    lv_retval := ARRAY_APPEND(lv_retval,('On the ' || pv_days[i] || ' day of Christmas')::text);
    lv_retval := ARRAY_APPEND(lv_retval,('my true love sent to me:')::text);
 
    /* Read backward through the lyrics based on the ascending value of the day. */
    FOR j IN REVERSE i..1 LOOP
      IF i = 1 THEN
        lv_retval := ARRAY_APPEND(lv_retval,('-'||'A'||' '|| pv_gifts[j].gift)::text);
      ELSIF j <= i THEN
        lv_retval := ARRAY_APPEND(lv_retval,('-'|| pv_gifts[j].day ||' '|| pv_gifts[j].gift )::text);
      END IF;
    END LOOP;
 
    /* A line break by verse. */
    lv_retval := ARRAY_APPEND(lv_retval,' '::text);
  END LOOP;
 
  /* Return the song's lyrics. */
  RETURN lv_retval;
END;
$$ LANGUAGE plpgsql;

Then, you can test it with this query:

SELECT UNNEST(twelve_days(ARRAY['first','second','third','fourth'
                          ,'fifth','sixth','seventh','eighth'
                          ,'nineth','tenth','eleventh','twelfth']
                         ,ARRAY[('and a','Partridge in a pear tree')::lyric
                          ,('Two','Turtle doves')::lyric
                          ,('Three','French hens')::lyric
                          ,('Four','Calling birds')::lyric
                          ,('Five','Golden rings')::lyric
                          ,('Six','Geese a laying')::lyric
                          ,('Seven','Swans a swimming')::lyric
                          ,('Eight','Maids a milking')::lyric
                          ,('Nine','Ladies dancing')::lyric
                          ,('Ten','Lords a leaping')::lyric
                          ,('Eleven','Pipers piping')::lyric
                          ,('Twelve','Drummers drumming')::lyric])) AS "12-Days of Christmas";

It prints:

       12-Days of Christmas
----------------------------------
 On the first day of Christmas
 my true love sent to me:
 -A Partridge in a pear tree
 
 On the second day of Christmas
 my true love sent to me:
 -Two Turtle doves
 -and a Partridge in a pear tree
 
 On the third day of Christmas
 my true love sent to me:
 -Three French hens
 -Two Turtle doves
 -and a Partridge in a pear tree
 
... Redacted for space ...
 
On the twelfth day of Christmas
 my true love sent to me:
 -Twelve Drummers drumming
 -Eleven Pipers piping
 -Ten Lords a leaping
 -Nine Ladies dancing
 -Eight Maids a milking
 -Seven Swans a swimming
 -Six Geese a laying
 -Five Golden rings
 -Four Calling birds
 -Three French hens
 -Two Turtle doves
 -and a Partridge in a pear tree

So, I believe that I met the challenge and hopefully provided a concrete example of some syntax that seems to be missing from most of the typical places.

Written by maclochlainn

May 16th, 2022 at 1:32 am

PL/SQL List Function

without comments

Students wanted to see how to write PL/SQL functions that accept, process, and return lists of values. I thought it would be cool to also demonstrate coupling of loop behaviors and wrote the example using the 12-Days of Christmas lyrics.

The twelve_days function accepts two different collections. One is an Attribute Data Type (ADT) and the other a User-Defined Type (UDT). An ADT is based on a scalar data type, and a UDT is based on an object type. Object types are basically data structures, and they support both positional and named notation for variable assignments.

The twelve_days function returns a list of string, which is an ADT of the VARCHAR2 data type. Creating the ADT types is easy and a single step, like:

/* Create a days object type. */
CREATE OR REPLACE
  TYPE days IS TABLE OF VARCHAR2(8);
/
 
/* Create a string object type. */
CREATE OR REPLACE
  TYPE song IS TABLE OF VARCHAR2(36);
/

Creating the UDT is more complex and requires two steps. You need to create the UDT object type, or structure, and then the list based on the UDT object type, like:

/* Create a lyric object type. */
CREATE OR REPLACE
  TYPE lyric IS OBJECT
  ( DAY   VARCHAR2(8)
  , gift  VARCHAR2(24));
/
 
/* Create a lyrics object type. */
CREATE OR REPLACE
  TYPE lyrics IS TABLE OF LYRIC;
/

Now, you can create the twelve_days function that uses these ADT and UDT types, like:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
CREATE OR REPLACE
  FUNCTION twelve_days
  ( pv_days   DAYS
  , pv_gifts  LYRICS ) RETURN song IS
 
  /* Initialize the collection of lyrics. */
  lv_retval  SONG := song();
 
  /* Local procedure to add to the song. */
  PROCEDURE ADD
  ( pv_input  VARCHAR2 ) IS
  BEGIN
    lv_retval.EXTEND;
    lv_retval(lv_retval.COUNT) := pv_input;
  END ADD;
 
BEGIN
  /* Read forward through the days. */
  FOR i IN 1..pv_days.COUNT LOOP
    ADD('On the ' || pv_days(i) || ' day of Christmas');
    ADD('my true love sent to me:');
 
    /* Read backward through the lyrics based on the ascending value of the day. */
    FOR j IN REVERSE 1..i LOOP
      IF i = 1 THEN
        ADD('-'||'A'||' '||pv_gifts(j).gift);
      ELSE
        ADD('-'||pv_gifts(j).DAY||' '||pv_gifts(j).gift);
      END IF;
    END LOOP;
 
    /* A line break by verse. */
    ADD(CHR(13));
  END LOOP;
 
  /* Return the song's lyrics. */
  RETURN lv_retval;
END;
/

You may notice the local add procedure on lines 10 thru 15. It lets you perform the two tasks required for populating an element in a SQL object type list in one line in the main body of the twelve_days function.

The add procedure first uses the EXTEND function to allocate space before assigning the input value to the newly allocated element in the list. Next, you can call the function inside the following SQL query:

SELECT column_value AS "12-Days of Christmas"
FROM   TABLE(twelve_days(days('first','second','third','fourth'
                             ,'fifth','sixth','seventh','eighth'
                             ,'nineth','tenth','eleventh','twelfth')
                        ,lyrics(lyric(DAY => 'and a', gift => 'Partridge in a pear tree')
                               ,lyric(DAY => 'Two',   gift => 'Turtle doves')
                               ,lyric(DAY => 'Three', gift => 'French hens')
                               ,lyric(DAY => 'Four',  gift => 'Calling birds')
                               ,lyric(DAY => 'Five',  gift => 'Golden rings' )
                               ,lyric(DAY => 'Six',   gift => 'Geese a laying')
                               ,lyric(DAY => 'Seven', gift => 'Swans a swimming')
                               ,lyric(DAY => 'Eight', gift => 'Maids a milking')
                               ,lyric(DAY => 'Nine',  gift => 'Ladies dancing')
                               ,lyric(DAY => 'Ten',   gift => 'Lords a leaping')
                               ,lyric(DAY => 'Eleven',gift => 'Pipers piping')
                               ,lyric(DAY => 'Twelve',gift => 'Drummers drumming'))));

It will print:

12-Days of Christmas
------------------------------------
On the first day of Christmas
my true love sent to me:
-A Partridge in a pear tree
 
On the second day of Christmas
my true love sent to me:
-Two Turtle doves
-and a Partridge in a pear tree
 
On the third day of Christmas
my true love sent to me:
-Three French hens
-Two Turtle doves
-and a Partridge in a pear tree
 
... redacted for space ...
 
On the twelfth day of Christmas
my true love sent to me:
-Twelve Drummers drumming
-Eleven Pipers piping
-Ten Lords a leaping
-Nine Ladies dancing
-Eight Maids a milking
-Seven Swans a swimming
-Six Geese a laying
-Five Golden rings
-Four Calling birds
-Three French hens
-Two Turtle doves
-and a Partridge in a pear tree

As always, I hope the example helps those looking for a solution to this type of problem.

Written by maclochlainn

May 13th, 2022 at 12:57 am

Transaction Management

without comments

Transaction Management

Learning Outcomes

  • Learn how to use Multiversion Concurrency Control (MVCC).
  • Learn how to manage ACID-compliant transactions.
  • Learn how to use:

    • SAVEPOINT Statement
    • COMMIT Statement
    • ROLLBACK Statement

Lesson Material

Transaction Management involves two key components. One is Multiversion Concurrency Control (MVCC) so one user doesn’t interfere with another user. The other is data transactions. Data transactions packag SQL statements in the scope of an imperative language that uses Transaction Control Language (TCL) to extend ACID-compliance from single SQL statements to groups of SQL statements.

Multiversion Concurrency Control (MVCC)

Multiversion Concurrency Control (MVCC) uses database snapshots to provide transactions with memory-persistent copies of the database. This means that users, via their SQL statements, interact with the in-memory copies of data rather than directly with physical data. MVCC systems isolate user transactions from each other and guarantee transaction integrity by preventing dirty transactions, writes to the data that shouldn’t happen and that make the data inconsistent. Oracle Database 12c prevents dirty writes by its MVCC and transaction model.

Transaction models depend on transactions, which are ACID-compliant blocks of code. Oracle Database 12c provides an MVCC architecture that guarantees that all changes to data are ACID-compliant, which ensures the integrity of concurrent operations on data—transactions.

ACID-compliant transactions meet four conditions:

Atomic
They complete or fail while undoing any partial changes.
Consistent
They change from one state to another the same way regardless of whether
the change is made through parallel actions or serial actions.
Isolated
Partial changes are never seen by other users or processes in the concurrent system.
Durable
They are written to disk and made permanent when completed.

Oracle Database 12c manages ACID-compliant transactions by writing them to disk first, as redo log files only or as both redo log files and archive log files. Then it writes them to the database. This multiple-step process with logs ensures that Oracle database’s buffer cache (part of the instance memory) isn’t lost from any completed transaction. Log writes occur before the acknowledgement-of-transactions process occurs.

The smallest transaction in a database is a single SQL statement that inserts, updates, or deletes rows. SQL statements can also change values in one or more columns of a row in a table. Each SQL statement is by itself an ACID-compliant and MVCC-enabled transaction when managed by a transaction-capable database engine. The Oracle database is always a transaction-capable system. Transactions are typically a collection of SQL statements that work in close cooperation to accomplish a business objective. They’re often grouped into stored programs, which are functions, procedures, or triggers. Triggers are specialized programs that audit or protect data. They enforce business rules that prevent unauthorized changes to the data.

SQL statements and stored programs are foundational elements for development of business applications. They contain the interaction points between customers and the data and are collectively called the application programming interface (API) to the database. User forms (typically web forms today) access the API to interact with the data. In well-architected business application software, the API is the only interface that the form developer interacts with.

Database developers, such as you and I, create these code components to enforce business rules while providing options to form developers. In doing so, database developers must guard a few things at all cost. For example, some critical business logic and controls must prevent changes to the data in specific tables, even changes in API programs. That type of critical control is often written in database triggers. SQL statements are events that add, modify, or delete data. Triggers guarantee that API code cannot make certain additions, modifications, or deletions to critical resources, such as tables. Triggers can run before or after SQL statements. Their actions, like the SQL statements themselves, are temporary until the calling scope sends an instruction to commit the work performed.

A database trigger can intercept values before they’re placed in a column, and it can ensure that only certain values can be inserted into or updated in a column. A trigger overrides an INSERT or UPDATE statement value that violates a business rule and then it either raises an error and aborts the transaction or changes the value before it can be inserted or updated into the table. Chapter 12 offers examples of both types of triggers in Oracle Database 12c.
MVCC determines how to manage transactions. MVCC guarantees how multiple users’ SQL statements interact in an ACID compliant manner. The next two sections qualify how data transactions work and how MVCC locks and isolates partial results from data transactions.

Data Transaction

Data Manipulation Language (DML) commands are the SQL statements that transact against the data. They are principally the INSERT, UPDATE, and DELETE statements. The INSERT statement adds new rows in a table, the UPDATE statement modifies columns in existing rows, and the DELETE statement removes a row from a table.

The Oracle MERGE statement transacts against data by providing a conditional insert or update feature. The MERGE statement lets you add new rows when they don’t exist or change column values in rows that do exist.

Inserting data seldom encounters a conflict with other SQL statements because the values become a new row or rows in a table. Updates and deletes, on the other hand, can and do encounter conflicts with other UPDATE and DELETE statements. INSERT statements that encounter conflicts occur when columns in a new row match a preexisting row’s uniquely constrained columns. The insertion is disallowed because only one row can contain the unique column set.

These individual transactions have two phases in transactional databases such as Oracle. The first phase involves making a change that is visible only to the user in the current session. The user then has the option of committing the change, which makes it permanent, or rolling back the change, which undoes the transaction. Developers use Transaction Control Language (TCL) commands to confirm or cancel transactions. The COMMIT statement confirms or makes permanent any change, and the ROLLBACK statement cancels or undoes any change.

A generic transaction lifecycle for a two-table insert process implements a business rule that specifies that neither INSERT statement works unless they both work. Moreover, if the first INSERT statement fails, the second INSERT statement never runs; and if the second INSERT statement fails, the first INSERT statement is undone by a ROLLBACK statement to a SAVEPOINT.

After a failed transaction is unwritten, good development practice requires that you write the failed event(s) to an error log table. The write succeeds because it occurs after the ROLLBACK statement but before the COMMIT statement.

A SQL statement followed by a COMMIT statement is called a transaction process, or a two-phase commit (2PC) protocol. ACID-compliant transactions use a 2PC protocol to manage one SQL statement or collections of SQL statements. In a 2PC protocol model, the INSERT, UPDATE, MERGE, or DELETE DML statement starts the process and submits changes. These DML statements can also act as events that fire database triggers assigned to the table being changed.

Transactions become more complex when they include database triggers because triggers can inject an entire layer of logic within the transaction scope of a DML statement. For example, database triggers can do the following:

  • Run code that verifies, changes, or repudiates submitted changes
  • Record additional information after validation in other tables (they can’t write to the table being changed—or, in database lexicon, “mutated”
  • Throw exceptions to terminate a transaction when the values don’t meet business rules

As a general rule, triggers can’t contain a COMMIT or ROLLBACK statement because they run inside the transaction scope of a DML statement. Oracle databases give developers an alternative to this general rule because they support autonomous transactions. Autonomous transactions run outside the transaction scope of the triggering DML statement. They can contain a COMMIT statement and act independently of the calling scope statement. This means an autonomous trigger can commit a transaction when the calling transaction fails.

As independent statements or collections of statements add, modify, and remove rows, one statement transacts against data only by locking rows: the SELECT statement. A SELECT statement typically doesn’t lock rows when it acts as a cursor in the scope of a stored program. A cursor is a data structure that contains rows of one-to-many columns in a stored program. This is also known as a list of record structures.

Cursors act like ordinary SQL queries, except they’re managed by procedure programs row by row. There are many examples of procedural programming languages. PL/SQL and SQL/PSM programming languages are procedural languages designed to run inside the database. C, C++, C#, Java, Perl, and PHP are procedural languages that interface with the database through well-defined interfaces, such as Java Database Connectivity (JDBC) and Open Database Connectivity (ODBC).

Cursors can query data two ways. One way locks the rows so that they can’t be changed until the cursor is closed; closing the cursor releases the lock. The other way doesn’t lock the rows, which allows them to be changed while the program is working with the data set from the cursor. The safest practice is to lock the rows when you open the cursor, and that should always be the case when you’re inserting, updating, or deleting rows that depend on the values in the cursor not changing until the transaction lifecycle of the program unit completes.

Loops use cursors to process data sets. That means the cursors are generally opened at or near the beginning of program units. Inside the loop the values from the cursor support one to many SQL statements for one to many tables.

Stored and external programs create their operational scope inside a database connection when they’re called by another program. External programs connect to a database and enjoy their own operational scope, known as a session scope. The session defines the programs’ operational scope. The operational scope of a stored program or external program defines the transaction scope. Inside the transaction scope, the programs interact with data in tables by inserting, updating, or deleting data until the operations complete successfully or encounter a critical failure. These stored program units commit changes when everything completes successfully, or they roll back changes when any critical instruction fails. Sometimes, the programs are written to roll back changes when any instruction fails.

In the Oracle Database, the most common clause to lock rows is the FOR UPDATE clause, which is appended to a SELECT statement. An Oracle database also supports a WAIT n seconds or NOWAIT option. The WAIT option is a blessing when you want to reply to an end user form’s request and can’t make the change quickly. Without this option, a change could hang around for a long time, which means virtually indefinitely to a user trying to run your application. The default value in an Oracle database is NOWAIT, WAIT without a timeout, or wait indefinitely.

You should avoid this default behavior when developing program units that interact with customers. The Oracle Database also supports a full table lock with the SQL LOCK TABLE command, but you would need to embed the command inside a stored or external program’s instruction set.

Written by maclochlainn

April 5th, 2022 at 2:20 pm

Oracle Unit Test

without comments

A unit test script may contain SQL or PL/SQL statements or it may call another script file that contains SQL or PL/SQL statements. Moreover, a script file is a way to bundle several activities into a single file because most unit test programs typically run two or more instructions as unit tests.

Unconditional Script File

You can write a simple unit test like the example program provided in the Lab 1 Help Section, which includes conditional logic. However, you can write a simpler script that is unconditional and raises exceptions when preconditions do not exist.

The following script file creates a one table and one_s sequence. The DROP TABLE and DROP SEQUENCE statements have the same precondition, which is that the table or sequence must previously exist.

-- Drop table one.
DROP TABLE one;
 
-- Crete table one.
CREATE TABLE one
( one_id    NUMBER
, one_text  VARCHAR2(10));
 
-- Drop sequence one_s.
DROP SEQUENCE one_s;
 
-- Create sequence one_s.
CREATE SEQUENCE one_s;

After writing the script file, you can save it in the lab2 subdirectory as the unconditional.sql file. After you login to the SQL*Plus environment from the lab2 subdirectory. You call the unconditional.sql script file from inside the SQL*Plus environment with the following syntax:

@unconditional.sql

It will display the following output, which raises an exception when the one table or one_s sequence does not already exist in the schema or database:

DROP TABLE one
           *
ERROR at line 1:
ORA-00942: table or view does not exist
 
Table created.
 
DROP SEQUENCE one_s
              *
ERROR at line 1:
ORA-02289: sequence does not exist
 
Sequence created.

An unconditional script raises exceptions when a precondition of the statement does not exist. The precondition is not limited to objects, like the table or sequence; and the precondition may be specific data in one or several rows of one or several tables. You can avoid raising conditional errors by writing conditional scripts.

Conditional Script File

A conditional script file contains statements that check for a precondition before running a statement, which effectively promotes their embedded statements to a lambda function. The following logic recreates the logic of the unconditional.sql script file as a conditional script file:

-- Conditionally drop a table and sequence.
BEGIN
  FOR i IN (SELECT   object_name
            ,        object_type
            FROM     user_objects
            WHERE    object_name IN ('ONE','ONE_S')
            ORDER BY object_type ) LOOP
    IF i.object_type = 'TABLE' THEN
      EXECUTE IMMEDIATE 'DROP TABLE '||i.object_name||' CASCADE CONSTRAINTS';
    ELSE
      EXECUTE IMMEDIATE 'DROP SEQUENCE '||i.object_name;
    END IF;
  END LOOP;
END;
/
 
-- Crete table one.
CREATE TABLE one
( one_id    NUMBER
, one_text  VARCHAR2(10));
 
-- Create sequence one_s.
CREATE SEQUENCE one_s;

You can save this script in the lab2 subdirectory as conditional.sql and then unit test it in SQL*Plus. You must manually drop the one table and one_s sequence before running the conditional.sql script to test the preconditions.

You will see that the conditional.sql script does not raise an exception because the one table or one_s sequence is missing. It should generate output to the console, like this:

PL/SQL procedure successfully completed.
 
Table created.
 
Sequence created.

As a rule, you should always write conditional script files. Unconditional script files throw meaningless errors, which may cause your good code to fail a deployment test that requires error free code.

Written by maclochlainn

April 5th, 2022 at 1:59 pm

Oracle’s Sparse Lists

without comments

Oracle’s PL/SQL Programming Language is really quite nice. I’ve written 8 books on it and still have fun coding in it. One nasty little detail about Oracle’s lists, introduced in Oracle 8 as PL/SQL Tables according their documentation, is they rely on sequential numeric indexes. Unfortunately, Oracle lists support a DELETE method, which can create gaps in the sequential indexes.

Oracle calls a sequence without gaps densely populated and a sequence with gaps sparsely populated. This can cause problems when PL/SQL code inadvertently removes elements at the beginning, end, or somewhere in the middle of the list. That’s because a program can then pass the sparsely populated list as a parameter to another stored function or procedure where the developer may traverse the list in a for-loop. That traversal may raise an exception in a for-loop, like this when it has gaps in the index sequence:

DECLARE
*
ERROR AT line 1:
ORA-01403: no data found
ORA-06512: AT line 20

Oracle’s myriad built-in libraries don’t offer a function to compact a sparsely populated list into a densely populated list. This post provides a compact stored procedure that converts a sparsely populated list to a densely populated list.

The first step to using the compact stored procedure requires that you create an object type in SQL, like this list of 20-character strings:

DROP TYPE list;
CREATE OR REPLACE
  TYPE list IS TABLE OF VARCHAR2(20);
/

Now, you can implement the compact stored procedure by passing the User-Defined Type as it’s sole parameter.

CREATE OR REPLACE
  PROCEDURE compact ( sparse IN OUT LIST ) IS
    /* Declare local variables. */
    iterator  NUMBER;           -- Leave iterator as null.
 
    /* Declare new list. */
    dense     LIST := list();
  BEGIN
    /*
      Initialize the iterator with the starting value, which is
      necessary because the first element of the original list
      could have been deleted in earlier operations. Setting the
      initial iterator value to the first numeric index value
      ensures you start at the lowest available index value.
    */
    iterator := sparse.FIRST;
 
    /* Convert sparsely populated list to densely populated. */
    WHILE (iterator <= sparse.LAST) LOOP
      dense.EXTEND;
      dense(dense.COUNT) := sparse(iterator);
      iterator := sparse.NEXT(iterator);
    END LOOP;
 
    /* Replace the input parameter with the compacted list. */
    sparse := dense;
  END;
/

Before we test the compact stored procedure, let’s create deleteElement stored procedure for our testing:

CREATE OR REPLACE
  PROCEDURE deleteElement ( sparse   IN OUT LIST
                          , element  IN     NUMBER ) IS
  BEGIN
    /* Delete a value. */
    sparse.DELETE(element);
  END;
/

Now, let’s use an anonymous block to test compacting a sparsely populated list into a densely populated list. The test program will remove the first, last, and one element in the middle before printing the sparsely populated list’s index and string values. This test will show you gaps in the remaining non-sequential index values.

After you see the gaps, the test program compacts the remaining list values into a new densely populated list. It then prints the new index values with the data values.

DECLARE
  /* Declare a four item list. */
  lv_strings  LIST := list('one','two','three','four','five','six','seven');
BEGIN
  /* Check size of list. */
  dbms_output.put_line('Print initial list size:  ['||lv_strings.COUNT||']');
  dbms_output.put_line('===================================');
 
  /* Delete a value. */
  deleteElement(lv_strings,lv_strings.FIRST);
  deleteElement(lv_strings,3);
  deleteElement(lv_strings,lv_strings.LAST);
 
  /* Check size of list. */
  dbms_output.put_line('Print modified list size: ['||lv_strings.COUNT||']');
  dbms_output.put_line('Print max index and size: ['||lv_strings.LAST||']['||lv_strings.COUNT||']');
  dbms_output.put_line('===================================');
  FOR i IN 1..lv_strings.LAST LOOP
    IF lv_strings.EXISTS(i) THEN
      dbms_output.put_line('List list index and item: ['||i||']['||lv_strings(i)||']');
    END IF;
  END LOOP;
 
  /* Call a procedure by passing current sparse collection and
     the procedure returns dense collection. */
  dbms_output.put_line('===================================');
  dbms_output.put_line('Compacting list.');
  compact(lv_strings);
  dbms_output.put_line('===================================');
 
  /* Print the new maximum index value and list size. */
  dbms_output.put_line('Print new index and size: ['||lv_strings.LAST||']['||lv_strings.COUNT||']');
  dbms_output.put_line('===================================');
  FOR i IN 1..lv_strings.COUNT LOOP
    dbms_output.put_line('List list index and item: ['||i||']['||lv_strings(i)||']');
  END LOOP;
  dbms_output.put_line('===================================');
END;
/

It produces output, like:

Print initial list size:  [7]
===================================
Print modified list size: [4]
Print max index and size: [6][4]
===================================
List list index and item: [2][two]
List list index and item: [4][four]
List list index and item: [5][five]
List list index and item: [6][six]
===================================
Compacting list.
===================================
Print new index and size: [4][4]
===================================
List list index and item: [1][two]
List list index and item: [2][four]
List list index and item: [3][five]
List list index and item: [4][six]
===================================

You can extend this concept by creating User-Defined Types with multiple attributes, which are essentially lists of tuples (to draw on Pythonic lingo).

Written by maclochlainn

October 4th, 2021 at 11:49 pm

Design Database Triggers

without comments

Designing and implementing database triggers is always interesting and sometimes not easy. I believe most of the difficulty comes from not implementing the triggers in a way that lets you perform single use case testing. For example, a trigger typically fires as a result of an INSERT, UPDATE, or DELETE statement. That means you can’t test the trigger’s logic independently from the SQL statement.

This post shows you how to implement an Oracle Database trigger that ensures a last_name field always has a hyphen when it is composed of two surnames. It also shows you how to build debugging directly into the trigger with Oracle’s conditional compilation logic (covered in my Oracle Database 12c PL/SQL Programming book on pages 170-171) while writing the debug comments to a debug logging table.

The example works through the design in stages. To begin the process, you need to define a zeta table and zeta_s sequence (no magic in the table or sequence names).

-- Create the zeta demo table.
CREATE TABLE zeta
( zeta_id     NUMBER
, last_name   VARCHAR2(30));
 
-- Create the zeta_s demo sequence.
CREATE SEQUENCE zeta_s;

Next, you write a basic on insert row-level (or, row-by-row) trigger. The following white_space trigger only fires when the last_name column value contains a whitespace between two components of a last name.

The code follows below:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
/*
|| Create an on insert trigger to implement the desired
|| logic, which replaces a whitespace between two portions
|| of a last_name column.
*/
CREATE OR REPLACE
  TRIGGER white_space
  BEFORE INSERT ON zeta
  FOR EACH ROW
  WHEN (REGEXP_LIKE(NEW.last_name,' '))
BEGIN
  :NEW.last_name := REGEXP_REPLACE(:NEW.last_name,' ','-',1,1);
END white_space;
/

You can now test the white_space trigger with these two INSERT statements:

-- Two test insert statements.
INSERT INTO zeta
( zeta_id, last_name ) 
VALUES 
( zeta_s.NEXTVAL, 'Baron-Schwartz' );
 
INSERT INTO zeta
( zeta_id, last_name ) 
VALUES 
( zeta_s.NEXTVAL, 'Zeta Jones' );

After running the two INSERT statements, you can query the last_name from the zeta table and verify that there’s always a hyphen between the two components of the last name, like:

SELECT * FROM zeta;

It should display:

   ZETA_ID LAST_NAME
---------- ------------------------------
         1 Baron-Schwartz
         2 Zeta-Jones

However, the business logic is violated when you run an UPDATE statement, like:

-- Update data and break the business rule.
UPDATE zeta
SET    last_name = 'Zeta Jones'
WHERE  last_name = 'Zeta-Jones';

A fresh query like

SELECT * FROM zeta;

Should display the following, which allowed an UPDATE statement to put in a non-conforming last name value:

   ZETA_ID LAST_NAME
---------- ------------------------------
         1 Baron-Schwartz
         2 Zeta Jones

You need to expand the role of your white_space trigger to prevent this undesired outcome by enabling it to fire on an insert or update event. You do that by adding ON UPDATE to line 8 below. The modified white_space trigger for both SQL events is:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
/*
|| Create an on insert or update trigger to implement the
|| desired logic, which replaces a whitespace between two 
|| portions of a last_name column.
*/
CREATE OR REPLACE
  TRIGGER white_space
  BEFORE INSERT OR UPDATE ON zeta
  FOR EACH ROW
  WHEN (REGEXP_LIKE(NEW.last_name,' '))
BEGIN
  :NEW.last_name := REGEXP_REPLACE(:NEW.last_name,' ','-',1,1);
END white_space;
/

Having made the change on line 8 above, you can now retest the white_space trigger with the following UPDATE statement. You should note that the WHERE clause uses a whitespace because the last UPDATE statement with the INSERT-only white_space trigger allowed its change.

UPDATE zeta
SET    last_name = 'Zeta-Jones'
WHERE  last_name = 'Zeta Jones';

Re-query the zeta table:

SELECT * FROM zeta;

It should display the following values that meet the business rule:

   ZETA_ID LAST_NAME
---------- ------------------------------
         1 Baron-Schwartz
         2 Zeta Jones

The modified white_space trigger doesn’t let us capture debug information and it doesn’t let us see whether the SQL event is an INSERT or UPDATE statement. It also fails to differentiate between outcomes from an INSERT and UPDATE event.

You can fix this by:

  • Creating a debug_log table that captures debugging information.
  • Creating a debug_procedure to format diagnostic strings.
  • Using the Data Manipulation Language (DML) Event Functions (covered in my Oracle Database 12c PL/SQL Programming book’s Table 12-3 on page 533) to track whether the event is an INSERT or UPDATE statement.

The three steps to make the trigger capable of different outcomes and debugging are:

  1. The following creates a debug_log table:

    -- Create the debug_log table.
    CREATE TABLE debug_log
    ( message  VARCHAR2(78));
  2. The following creates an a debug procedure:

    -- Create a debug logging procedure.
    CREATE OR REPLACE
      PROCEDURE debug ( event     VARCHAR2 := 'Unknown'
                      , location  VARCHAR2
                      , COLUMN    VARCHAR2 ) IS
        /* Local message variable. */
        lv_message  VARCHAR2(78);
     
        /* Set procedure as an autonomous transaction. */ 
        PRAGMA AUTONOMOUS_TRANSACTION;
      BEGIN
        /* Build, insert, and commit message in log. */
        lv_message := event || ' event at ' || location || ' on column [' || COLUMN || ']';
        INSERT INTO debug_log ( message ) VALUES ( lv_message );
        COMMIT;
      END;
    /
  3. The following creates an a replacement white_space trigger equipped with event tracking and conditional compilation debug calls to the debug_log table:

    You actually need to change the session before compiling this trigger with the following command so that the conditional compilation instructions work:

    ALTER SESSION SET PLSQL_CCFLAGS = 'DEBUG:1';

    Then, create the white_space trigger from the following code:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    
    -- Create a debug logging procedure.
    CREATE OR REPLACE
      TRIGGER white_space
      BEFORE INSERT OR UPDATE ON zeta
      FOR EACH ROW
      WHEN (REGEXP_LIKE(NEW.last_name,' '))
    DECLARE
      lv_event  VARCHAR2(9);
    BEGIN
      /* Conditional debugging. */
      $IF $$DEBUG = 1 $THEN
        debug( location     => 'before IF statement'
             , column_value => ':new.last_name' );
      $END
     
      IF INSERTING THEN
        lv_event := 'Inserting';
     
        /* Conditional debugging. */
        $IF $$DEBUG = 1 $THEN
          debug( event        => lv_event
               , location     => 'after IF statement'
               , column_value => ':new.last_name' );
        $END
     
        :NEW.last_name := REGEXP_REPLACE(:NEW.last_name,' ','-',1,1);
      ELSIF UPDATING THEN
        lv_event := 'Updating';
     
        /* Conditional debugging. */
        $IF $$DEBUG = 1 $THEN
          debug( event        => lv_event
               , location     => 'after ELSIF statement'
               , column_value => ':new.last_name' );
        $END
     
        RAISE_APPLICATION_ERROR(-20001,'Whitespace replaced with hyphen.');
      END IF;
        /* Conditional debugging. */
        $IF $$DEBUG = 1 $THEN
          debug( location     => 'after END IF statement'
               , column_value => ':new.last_name' );
        $END
    END white_space;
    /

A new test case for the modified white_space trigger uses an INSERT and UPDATE statement, like:

INSERT INTO zeta
( zeta_id, last_name ) 
VALUES 
( zeta_s.NEXTVAL, 'Pinkett Smith' );
 
UPDATE zeta
SET    last_name = 'Pinkett Smith'
WHERE  last_name = 'Pinkett-Smith';

The UPDATE statement violates the business rule and the new white_space trigger throws an error when an attempt is made to update the last_name with two names separated by a whitespace. The UPDATE statement raises the following error stack:

UPDATE zeta
       *
ERROR AT line 1:
ORA-20001: Whitespace replaced WITH hyphen.
ORA-06512: AT "STUDENT.WHITE_SPACE", line 31
ORA-04088: error during execution OF TRIGGER 'STUDENT.WHITE_SPACE'

Re-query the zeta table:

SELECT * FROM zeta;

It should display the following values that meet the business rule. The new third row in the table came from the INSERT statement in the test case.

   ZETA_ID LAST_NAME
---------- ------------------------------
         1 Baron-Schwartz
         2 Zeta-Jones
         3 Pinkett-Smith

Unfortunately, there’s a lot of debugging clutter in the white_space trigger. The other downside is it requires testing from INSERT and UPDATE statements rather than simple anonymous block. You can fix that by doing two things:

  1. Remove the body of the trigger to an autonomous zeta_function.
  2. Put a logic router in the trigger with a call to the autonomous zeta_function.

Here’s the script to create the zeta_function:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
CREATE OR REPLACE
  FUNCTION zeta_function 
  ( column_value  VARCHAR2
  , event         VARCHAR2 ) RETURN VARCHAR2 IS
 
    /* Return value. */
    lv_retval  VARCHAR2(30) := column_value;
 
    /* Set function as an autonomous transaction. */ 
    PRAGMA AUTONOMOUS_TRANSACTION;
  BEGIN
 
    /* Conditional debugging. */
    $IF $$DEBUG = 1 $THEN
      debug( location     => 'before IF statement'
           , column_value => ':new.column_value' );
    $END
 
    /* Check if event is INSERT statement. */
    IF event = 'INSERTING' THEN
 
      /* Conditional debugging. */
      $IF $$DEBUG = 1 $THEN
        debug( event        =>  INITCAP(event)
             , location     => 'after IF statement'
             , column_value => ':new.column_value' );
      $END
 
      /* Replace a whitespace with a hyphen. */
      lv_retval := REGEXP_REPLACE(column_value,' ','-',1,1);
 
    /* Check if event is UPDATE statement. */
    ELSIF event = 'UPDATING' THEN
 
      /* Conditional debugging. */
      $IF $$DEBUG = 1 $THEN
        debug( event        =>  INITCAP(event)
             , location     => 'after ELSIF statement'
             , column_value => ':new.column_value' );
      $END
 
      /* Raise error to state policy allows no changes. */
      RAISE_APPLICATION_ERROR(-20001,'Whitespace replaced with hyphen.');
 
    END IF;
 
      /* Conditional debugging. */
      $IF $$DEBUG = 1 $THEN
        debug( location     => 'after END IF statement'
             , column_value => ':new.column_value' );
      $END
 
    /* Return modified column for insert or original column for update. */
    RETURN lv_retval;
  END zeta_function;
/

The refactored white_space trigger follows:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
CREATE OR REPLACE
  TRIGGER white_space
  BEFORE INSERT OR UPDATE ON zeta
  FOR EACH ROW
  WHEN (REGEXP_LIKE(NEW.last_name,' '))
DECLARE
  lv_event  VARCHAR2(9);
BEGIN
  /* Set evaluation event. */
  IF    INSERTING THEN lv_event := 'INSERTING';
  ELSIF UPDATING  THEN lv_event := 'UPDATING';
  END IF;
 
  /*
  || Assign the result of the formatted string to the 
  || new last_name value.
  */
  :NEW.last_name := zeta_function( event        => lv_event
                                 , column_value => :NEW.last_name);
END white_space;
/

A new test case for the modified white_space trigger uses an INSERT and UPDATE statement with some new values.

INSERT INTO zeta
( zeta_id, last_name ) 
VALUES 
( zeta_s.NEXTVAL, 'Day Lewis' );
 
UPDATE zeta
SET    last_name = 'Day Lewis'
WHERE  last_name = 'Day-Lewis';

The UPDATE statement continues to violate the business rule and the modified white_space trigger throws a different error stack. The new error stack includes the zeta_function because that’s where you throw the error. It is caught and re-thrown by the white_space trigger.

UPDATE zeta
       *
ERROR AT line 1:
ORA-20001: Whitespace replaced WITH hyphen.
ORA-06512: AT "STUDENT.ZETA_FUNCTION", line 47
ORA-06512: AT "STUDENT.WHITE_SPACE", line 13
ORA-04088: error during execution OF TRIGGER 'STUDENT.WHITE_SPACE'

Re-query the zeta table:

SELECT * FROM zeta;

It should display the following values that meet the business rule. The new third row in the table came from the INSERT statement in the test case.

   ZETA_ID LAST_NAME
---------- ------------------------------
         1 Baron-Schwartz
         2 Zeta-Jones
         3 Pinkett-Smith
         4 Day-Lewis

Now, you can query the debug_log table and see the debug messages that you captured from testing the INSERT and UPDATE statements. You get three messages from the INSERT statement test and only two from the UPDATE statement test.

MESSAGE
------------------------------------------------------------------
Unknown event at before IF statement on column [:new.last_name]
Inserting event at after IF statement on column [:new.last_name]
Unknown event at after END IF statement on column [:new.last_name]
Unknown event at before IF statement on column [:new.last_name]
Updating event at after ELSIF statement on column [:new.last_name]

As always, I hope this helps people see new ways to solve problems.

Written by maclochlainn

June 30th, 2021 at 11:30 pm

PL/SQL Mimic Iterator

without comments

There’s no formal iterator in PL/SQL but you do have the ability of navigating a list or array with Oracle’s Collection API. For example, the following navigates a sparsely indexed collection from the lowest to the highest index value while skipping a missing index value:

DECLARE
  /* Create a local table collection. */
  TYPE list IS TABLE OF VARCHAR2(10);
 
  /* Declare the collection. */
  lv_list  LIST := list('Moe','Shemp','Larry','Curly');
 
  /* Declare a current index variable. */
  CURRENT  NUMBER;
BEGIN
  /* Create a gap in the densely populated index. */
  lv_list.DELETE(2);
 
  /* Mimic an iterator in the loop. */
  CURRENT := lv_list.FIRST;
  WHILE NOT (CURRENT > lv_list.LAST) LOOP
    dbms_output.put_line('['||CURRENT||']['||lv_list(CURRENT)||']');
    CURRENT := lv_list.NEXT(CURRENT);
  END LOOP;
END;
/

The next one, navigates a sparsely indexed collection from the highest to the lowest index value while skipping a missing index value:

DECLARE
  /* Create a local table collection. */
  TYPE list IS TABLE OF VARCHAR2(10);
 
  /* Declare the collection. */
  lv_list  LIST := list('Moe','Shemp','Larry','Curly');
 
  /* Declare a current index variable. */
  CURRENT  NUMBER;
BEGIN
  /* Create a gap in the densely populated index. */
  lv_list.DELETE(2);
 
  /* Mimic an iterator in the loop. */
  CURRENT := lv_list.LAST;
  WHILE NOT (CURRENT < lv_list.FIRST) LOOP
    dbms_output.put_line('['||CURRENT||']['||lv_list(CURRENT)||']');
    CURRENT := lv_list.PRIOR(CURRENT);
  END LOOP;
END;
/

However, the next example is the most valuable because it applies to a PL/SQL associative array indexed by string values. You should note that the string indexes are organized in ascending order and assigned in the execution section of the program. This differs from the earlier examples where the values are assigned by constructors in the declaration section.

There’s no need to delete an element from the associative array because the string-based indexes are already sparsely constructed. A densely populated character index sequence is possible but not very useful, which is probably why there aren’t any examples of it.

Moreover, the following example is how you navigate a dictionary, which is known as an associative array in Oracle parlance (special words to describe PL/SQL structures). Unfortunately, associative arrays lack any utilities like Python’s key() method for dictionaries.

DECLARE
  /* Create a local associative array type. */
  TYPE list IS TABLE OF VARCHAR2(10) INDEX BY VARCHAR2(10);
 
  /* Define a variable of the associative array type. */
  lv_list  LIST; --  := list('Moe','Shemp','Larry','Curly');
 
  /* Declare a current index variable. */
  CURRENT  VARCHAR2(5);
BEGIN
  /* Assign values to an associative array (PL/SQL structure). */
  lv_list('One') := 'Moe';
  lv_list('Two') := 'Shemp';
  lv_list('Three') := 'Larry';
  lv_list('Four') := 'Curly';
 
  /* Mimic iterator. */
  CURRENT := lv_list.FIRST;
  dbms_output.put_line('Debug '||CURRENT);
  WHILE NOT (CURRENT < lv_list.LAST) LOOP
    dbms_output.put_line('['||CURRENT||']['||lv_list(CURRENT)||']');
    CURRENT := lv_list.NEXT(CURRENT);
  END LOOP;
END;
/

As always, I hope this example helps somebody solve a real world problem.

Written by maclochlainn

May 14th, 2021 at 4:50 pm

What Identifier?

without comments

It’s always interesting to see students find the little nuances that SQL*Plus can generate. One of the first things we cover is the concept of calling PL/SQL interactively versus through an embedded call. The easiest and first exercise simply uses an insecure call like:

sqlplus -s student/student @call.sql

to the call.sql program:

SQL> DECLARE
  2    lv_input  VARCHAR2(20);
  3  BEGIN
  4    lv_input := '&1';
  5    dbms_output.put_line('['||lv_input||']');
  6  END;
  7  /

It prints the following to console:

Enter value for 1: machine
old   4:   lv_input := '&1';
new   4:   lv_input := 'machine';
[machine]
 
PL/SQL procedure successfully completed.

Then, we change the '&1' parameter variable to '&mystery' and retest the program, which prints the following to the console:

Enter value for mystery: machine
old   4:   lv_input := '&mystery';
new   4:   lv_input := 'machine';
[machine]
 
PL/SQL procedure successfully completed.

After showing a numeric and string input parameter, we remove the quotation from the lv_input input parameter and raise the following error:

Enter value for mystery: machine
old   4:   lv_input := &mystery;
new   4:   lv_input := machine;
  lv_input := machine;
              *
ERROR at line 4:
ORA-06550: line 4, column 15:
PLS-00201: identifier 'MACHINE' must be declared
ORA-06550: line 4, column 3:
PL/SQL: Statement ignored

The point of the exercise is to spell out that the default input value is numeric and that if you pass a string it becomes an identifier in the scope of the program. So, we rewrite the call.sql program file by adding a machine variable, like:

SQL> DECLARE
  2    lv_input  VARCHAR2(20);
  3    machine   VARCHAR2(20) := 'Mystery Machine';
  4  BEGIN
  5    lv_input := &mystery;
  6    dbms_output.put_line('['||lv_input||']');
  7  END;
  8  /

It prints the following:

Enter value for mystery: machine
old   5:   lv_input := &mystery;
new   5:   lv_input := machine;
[Mystery Machine]
 
PL/SQL procedure successfully completed.

The parameter name becomes an identifier and maps to the variable machine. That mapping means it prints the value of the machine variable.

While this is what we’d call a terminal use case, it is a fun way to illustrate an odd PL/SQL behavior. As always, I hope its interesting for those who read it.

Written by maclochlainn

April 26th, 2021 at 12:47 pm

PL/SQL Inheritance Failure

without comments

PL/SQL is a great programming language as far as it goes but it lacks true type inheritance for its collections. While you can create an object type and subtype, you can’t work with collections of those types the same way. PL/SQL object type inheritance, unlike the Java class hierarchy and parallel array class hierarchy, only supports a class hierarchy. Effectively, that means:

  • You can pass a subtype as a call parameter, or argument, to a parent data type in a function, procedure, or method signature, but
  • You can’t pass a collection of a subtype as a call parameter, or argument, to a collection of parent type in a function, procedure, or method signature.

The limitation occurs because collections have their own data type, which is fixed when you create them. Worse yet, because Oracle has never seen fit to fix their two underlying code trees (23 years and counting since Oracle 8i), you have two types of collections using two distinct C/C++ libraries. You define collections of Attribute Data Types (ATDs) when you create a collection of a standard scalar data type, like NUMBER, VARCHAR2, or DATE. You define collection of User-Defined Data Types (UTDs) when you create a collection of a SQL UDT or PL/SQL-only RECORD data type. The former uses one C/C++ library and the latter another.

Now, Oracle even make the differences between Java and PL/SQL more complex because it treats collections known as tables, really lists in most programming languages, differently than varrays, or arrays. You create a TABLE collection, or list, when you create a table of a scalar or UDT data type. There are two options when you create these object types, and they are:

  • You create an empty collection with a no element constructor, which means you’ll need to allocate memory before assigning element values later in your program.
  • You create a populated collection with a comma-delimited list of elements.

Both approaches give you a list of elements with a densely populated index. A “densely populated index” is Oracle’s jargon for how they characterize a 1-based sequence of integers without any gaps (e.g., 1, 2, 3, …). The initial construction works the same way whether you create a TABLE or VARRAY collection type. Unfortunately, after you’ve built the collection behaviors change. If you use Oracle’s Collection API to delete one or more items from a TABLE collection type, you create gaps in the index’s sequence of values. That means you must use special logic to navigate across a TABLE collection type to ensure it doesn’t fail when encountering a gap in the numeric sequence.

For example, here’s a FOR-LOOP without the logic to vouchsafe a uninterrupted set of sequence values incrementing by a counter of 1 element at a time:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
DECLARE
  /* Create a local table collection. */
  TYPE list IS TABLE OF VARCHAR2(10);
 
  /* Statically allocate memory and assign values
     to for elements. */
  lv_list  LIST := list('Moe','Shemp','Larry','Curly');
BEGIN
  /* Remove the second element, Shemp, from the 
     collection of variable length strings. */
  lv_list.DELETE(2);
 
  /* Loop through the target with a for loop, which
     depends on densely populated index values. */
  FOR i IN 1..lv_list.COUNT LOOP
    dbms_output.put_line('['||lv_list(i)||']');
  END LOOP;
END;
/

The program fails when it tries to read the second element of the table collection, which was previously removed. It raises the following error message after print the first element of the table collection:

[Moe]
DECLARE
*
ERROR at line 1:
ORA-01403: no data found
ORA-06512: at line 16

Conveniently, Oracle’s Collection API provides an EXISTS method that we can use to check for the presence of an index’s value. Modifying line 16 by wrapping it in an IF-statement fixes one problem but identifies another:

15
16
17
18
19
  FOR i IN 1..lv_list.COUNT LOOP
    IF lv_list.EXISTS(i) THEN
      dbms_output.put_line('['||lv_list(i)||']');
    END IF;
  END LOOP;

The program no longer fails on a missing index value, or index gap, but it returns fewer lines of output than you might expect.

That’s because the Oracle Collection API’s COUNT method returns the number of elements currently allocated in memory not the number of original elements. We learn that when we deleted the second element, Oracle deleted the memory allocated for it as well. This is the type of behavior you might expect for a singly linked list. It prints:

[Moe]
[Larry]

One more change is required to count past and to the highest index value. One line 15, change the COUNT method call to the LAST method call, which returns the highest index value.

15
16
17
18
19
  FOR i IN 1..lv_list.LAST LOOP
    IF lv_list.EXISTS(i) THEN
      dbms_output.put_line('['||lv_list(i)||']');
    END IF;
  END LOOP;

It now prints the three stooges we would expect to see:

[Moe]
[Larry]
[Curly]

Realistically, a FOR-LOOP is not the best control structure for a collection. You should use a WHILE-LOOP and treat the incrementing value as an iterator rather than sequence index value. An iterator doesn’t worry about gaps in the sequence, it simply moves to the next element in the singly linked list. Here’s an example that uses the iterator approach with a WHILE-LOOP:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
DECLARE
  /* Create a local table collection. */
  TYPE list IS TABLE OF VARCHAR2(10);
 
  /* Statically allocate memory and assign values
     to for elements. */
  lv_list  LIST := list('Moe','Shemp','Larry','Curly');
 
  /* Declare a current index variable. */
  CURRENT  NUMBER;
BEGIN
  /* Remove the second element, Shemp, from the 
     collection of variable length strings. */
  lv_list.DELETE(2);
 
  /* Loop through the target with a while loop, which
     doesn't depend on densely populated index values
     by setting the starting index value and increment
     as if with an iterator. */
  CURRENT := lv_list.FIRST;
  WHILE NOT (CURRENT > lv_list.LAST) LOOP
    dbms_output.put_line('['||lv_list(CURRENT)||']');
    CURRENT := lv_list.NEXT(CURRENT);
  END LOOP;
END;
/

The iterator approach prints the elements as:

[Moe]
[Larry]
[Curly]

You can reverse the process with the following changes to lines 20-24:

20
21
22
23
24
  CURRENT := lv_list.LAST;
  WHILE NOT (CURRENT < lv_list.FIRST) LOOP
    dbms_output.put_line('['||lv_list(CURRENT)||']');
    CURRENT := lv_list.PRIOR(CURRENT);
  END LOOP;

It prints the list backwards:

[Curly]
[Larry]
[Moe]

After covering the issues with sparsely populated, those with gaps in the sequence of indexes values, table collections, let’s examine how you must work around PL/SQL’s lack of a parallel array class hierarchy. The solution lies in combining two programming concepts:

  • A function to pack the sparsely populated table collection into a densely populated one, and
  • A package with overloaded functions that pack different table collections.

To develop the test case, let’s use an ADT collection because it’s the simplest to work with. The following creates a table collection of a thirty character long scalar string:

1
2
3
CREATE OR REPLACE
  TYPE list IS TABLE OF VARCHAR2(30);
/

The following pack function takes a table collection of the thirty character long scalar string, evaluates the string for missing elements, and packs the existing elements into a densely populated list:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CREATE OR REPLACE
  FUNCTION pack
  ( pv_list  LIST ) RETURN list IS
 
  /* Declare a new list. */
  lv_new  LIST  := list();
BEGIN
  /* Read, check, and pack an old list into a new one. */
  FOR i IN 1..pv_list.LAST LOOP
    IF pv_list.EXISTS(i) THEN
      lv_new.EXTEND;
      lv_new(lv_new.COUNT) := pv_list(i);
    END IF;
  END LOOP;
  RETURN lv_new;
END;
/

This anonymous block tests the pack function:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
DECLARE
  /* Declare a list value. */
  lv_test  LIST := list('Moe','Shemp','Larry','Curly');
BEGIN
  /* Remove one element in the middle. */
  lv_test.DELETE(2);
 
  /* Pack the list of elements into a sequence of values. */
  lv_test := pack(lv_test);
 
  /* Print the list of elements from the packed list. */
  FOR i IN 1..lv_test.COUNT LOOP
    dbms_output.put_line('['||lv_test(i)||']');
  END LOOP;
END;
/

It prints the expected three string values:

[Moe]
[Larry]
[Curly]

Now, let’s expand the example to build an overloaded package. The first step requires building a base_t object type and a table collection of the object type, like:

1
2
3
4
5
6
7
8
9
CREATE OR REPLACE
  TYPE base_t IS OBJECT
  ( oid  NUMBER )
  INSTANTIABLE NOT FINAL;
/
 
CREATE OR REPLACE
  TYPE base_list IS TABLE OF base_t;
/

Next, you create a book_t subtype of the base_t object type and a book_list table collection of the book_t subtype, like:

1
2
3
4
5
6
7
8
9
CREATE OR REPLACE
  TYPE book_t UNDER base_t
  ( title  VARCHAR2(30)
  , COST   NUMBER);
/
 
CREATE OR REPLACE
  TYPE book_list IS TABLE OF book_t;
/

We can test the base_t and book_t default constructors with the following SQL*Plus formatting and SQL query:

COL oid   FORMAT 999
COL title FORMAT A20
COL COST  FORMAT 99.99
SELECT *
FROM   TABLE(book_list(book_t(1,'Neuromancer',15.30)
                      ,book_t(2,'Count Zero',7.99)
                      ,book_t(3,'Mona Lisa Overdrive',7.99)
                      ,book_t(4,'Burning Chrome',8.89)));

It prints the following output:

 OID TITLE                  COST
---- -------------------- ------
   1 Neuromancer           15.30
   2 Count Zero             7.99
   3 Mona Lisa Overdrive    7.99
   4 Burning Chrome         8.89

The following is an overloaded package specification:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
CREATE OR REPLACE
  PACKAGE packer IS
 
  /* A simple ADT list of strings. */
  FUNCTION pack
  ( pv_list  LIST ) RETURN list;
 
  /* A UDT list of base objects. */
  FUNCTION pack
  ( pv_list  BASE_LIST ) RETURN base_list;
 
  /* A UDT list of subtype objects. */
  FUNCTION pack
  ( pv_list  BOOK_LIST ) RETURN book_list;
 
END;
/

After you create the package specification, you need to provide the implementation. This is typical in any programming language that supports Interface Description Language (IDL). A package body provides the implementation for the package specification. The package body follows:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
CREATE OR REPLACE
  PACKAGE BODY packer IS
 
  /* A simple ADT list of strings. */
  FUNCTION pack
  ( pv_list  LIST ) RETURN list IS
 
    /* Declare a new list. */
    lv_new  LIST  := list();
  BEGIN
    /* Read, check, and pack an old list into a new one. */
    FOR i IN 1..pv_list.LAST LOOP
      IF pv_list.EXISTS(i) THEN
        lv_new.EXTEND;
        lv_new(lv_new.COUNT) := pv_list(i);
      END IF;
    END LOOP;
    RETURN lv_new;
  END pack;
 
  /* A simple ADT list of strings. */
  FUNCTION pack
  ( pv_list  BASE_LIST ) RETURN base_list IS
 
    /* Declare a new list. */
    lv_new  BASE_LIST  := base_list();
  BEGIN
    /* Read, check, and pack an old list into a new one. */
    FOR i IN 1..pv_list.LAST LOOP
      IF pv_list.EXISTS(i) THEN
        lv_new.EXTEND;
        lv_new(lv_new.COUNT) := pv_list(i);
      END IF;
    END LOOP;
    RETURN lv_new;
  END pack;
 
  /* A simple ADT list of strings. */
  FUNCTION pack
  ( pv_list  BOOK_LIST ) RETURN book_list IS
 
    /* Declare a new list. */
    lv_new  BOOK_LIST  := book_list();
  BEGIN
    /* Read, check, and pack an old list into a new one. */
    FOR i IN 1..pv_list.LAST LOOP
      IF pv_list.EXISTS(i) THEN
        lv_new.EXTEND;
        lv_new(lv_new.COUNT) := pv_list(i);
      END IF;
    END LOOP;
    RETURN lv_new;
  END pack;
 
END packer;
/

The test case for the base_list object type is:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
DECLARE
  lv_test  BASE_LIST :=
    base_list(base_t(1),base_t(2)
             ,base_t(3),base_t(4));
BEGIN
  /* Remove one element in the middle. */
  lv_test.DELETE(2);
 
  /* Pack the list of elements into a sequence of values. */
  lv_test := packer.pack(lv_test);
 
  /* Print the list of elements from the packed list. */
  FOR i IN 1..lv_test.LAST LOOP
    dbms_output.put_line('['||lv_test(i).oid||']');
  END LOOP;
END;
/

It prints the following output:

[1]
[3]
[4]

The test case for the book_list object type is:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
DECLARE
  lv_test  BOOK_LIST := 
    book_list(book_t(1,'Neuromancer',15.30)
             ,book_t(2,'Count Zero',7.99)
             ,book_t(3,'Mona Lisa Overdrive',7.99)
             ,book_t(4,'Burning Chrome',8.89));
BEGIN
  /* Remove one element in the middle. */
  lv_test.DELETE(2);
 
  /* Pack the list of elements into a sequence of values. */
  lv_test := packer.pack(lv_test);
 
  /* Print the list of elements from the packed list. */
  FOR i IN 1..lv_test.LAST LOOP
    dbms_output.put_line( '['||lv_test(i).oid||']'
                        ||'['||lv_test(i).title||']'
                        ||'['||lv_test(i).COST||']');
  END LOOP;
END;
/

It prints the following output:

[1][Neuromancer][15.3]
[3][Mona Lisa Overdrive][7.99]
[4][Burning Chrome][8.89]

In conclusion, you would not have to write overloaded methods for every list if PL/SQL supported class hierarchy and parallel array class hierarchy like Java. Unfortunately, it doesn’t and likely won’t in the future. You can pack table collections as a safety measure when they’re passed as parameters to other functions, procedures, or methods with the code above.

As always, I hope this helps those looking for a solution.

Written by maclochlainn

February 1st, 2021 at 12:08 am

PL/SQL Coupled Loops

without comments

The purpose of this example shows you how to navigate a list with a sparsely populated index. This can occur when one element has been removed after the list was initialized. Unlike Oracle’s VARRAY (array), removing an element from a TABLE or list does not re-index the elements of the list.

This example also shows you how to coupled lists. The outer loop increments, notwithstanding the gap in index values, while the inner loop decrements. The upper range of the inner loop is set by the index value of the outer loop.

The example program uses an abbreviated version of the Twelve Days of Christmas, and I’ve tried to put teaching notes throughout the example file.

DECLARE
  /* Create a single column collection that is a list strings
     less than 8 characters in length and another of strings
     less than 20 characters in length. */
  TYPE DAY   IS TABLE OF VARCHAR2(8);
  TYPE verse IS TABLE OF VARCHAR2(20);
 
  /* Create variables that use the user-defined types:
  || =================================================
  ||  1. We give the variable a name of lv_day and lv_verse.
  ||  2. We assign a user-defined ADT (Attribute Data Type) collection.
  ||  3. We assign a list of value to the constructor of the list, which
  ||     allocates memory for each item in the comma-delimited list of
  ||     string.
  */
  lv_day   DAY   := DAY('first','second','third','fourth','fifth');
  lv_verse VERSE := verse('Partridge','Turtle Doves','French Hen'
                         ,'Calling Birds','Gold Rings');
 
BEGIN
  /*
  ||  Remove an element from each of the two lists, which makes the two
  ||  lists sparsely indexed. A sparsely indexed list has gaps in the
  ||  sequential index of the list.
  */
 
  lv_day.DELETE(3);
 
  /*
  ||   Loop through the list of days:
  ||  ===================================================j
  ||   1. A list created by a comma-delimited list is densely populated,
  ||      which means it has no gaps in the sequence of indexes.
  ||   2. A list created by any means that is subsequently accessed
  ||      and has one or more items removed is sparsely populated,
  ||      which means it may have gaps in the sequence of indexes.
  ||   3. A FOR loop anticipates densely populated indexes and fails
  ||      when trying to read a missing index, which is why you should
  ||      use an IF statement to check for the element of a list before
  ||      accessing it.
  ||   4. A COUNT method returns the number of elements allocated memory
  ||      in a list of values and the LAST method returns the highest
  ||      index value. The index value is alway an integer for user-defined
  ||      ADT (Attribute Data Type) collections, but may be a string for
  ||      an associative array or a PL/SQL list indexed by a string.
  ||   5. Removing an element from a list does not change the other
  ||      index values but does if you create an array (or varray), which
  ||      means COUNT OR LAST may cause the same type of error for a list
  ||      with a missing element.
  */
 
  FOR i IN 1..lv_day.LAST LOOP
 
    /*
    ||  Verify the index is valid.
    || ====================================================
    ||  You check whether the element is present in the
    ||  list.
    */
 
    IF lv_day.EXISTS(i) THEN
 
      /* Print the beginning of the stanza. */
      dbms_output.put_line('On the ['||lv_day(i)||'] of Christmas ...');
 
      /* Print the song. */
      FOR j IN REVERSE 1..i LOOP
        /* Check if the day exists. */
        IF lv_verse.EXISTS(j) THEN
          /* All but first and last verses. */
          IF j > 1 THEN
            dbms_output.put_line('-   ['||lv_verse(j)||']');
          /* The last verse. */
          ELSIF i = j THEN
            dbms_output.put_line('- A ['||lv_verse(j)||']'||CHR(10));
          /* Last verse. */
          ELSE
            dbms_output.put_line('and a ['||lv_verse(j)||']'||CHR(10));
          END IF;
        END IF;
      END LOOP;
    ELSE
      CONTINUE;
    END IF;
  END LOOP;
END;
/

As always, I hope it helps you solve problems in the real world.

Written by maclochlainn

January 27th, 2021 at 9:09 pm