MacLochlainns Weblog

Michael McLaughlin's Technical Blog

Site Admin

Archive for the ‘MySQL Developer’ tag

MySQL 5-Table Procedure

with one comment

A student wanted a better example of writing a MySQL Persistent Stored Module (PSM) that maintains transactional scope across a couple tables. Here’s the one I wrote about ten years ago to build the MySQL Video Store model. It looks I neglected to put it out there before, so here it is for reference.

-- Conditionally drop procedure if it exists.
DROP PROCEDURE IF EXISTS contact_insert;
 
-- Reset the delimiter so that a semicolon can be used as a statement and block terminator.
DELIMITER $$
 
SELECT 'CREATE PROCEDURE contact_insert' AS "Statement";
CREATE PROCEDURE contact_insert
( pv_member_type         CHAR(12)
, pv_account_number      CHAR(19)
, pv_credit_card_number  CHAR(19)
, pv_credit_card_type    CHAR(12)
, pv_first_name          CHAR(20)
, pv_middle_name         CHAR(20)
, pv_last_name           CHAR(20)
, pv_contact_type        CHAR(12)
, pv_address_type        CHAR(12)
, pv_city                CHAR(30)
, pv_state_province      CHAR(30)
, pv_postal_code         CHAR(20)
, pv_street_address      CHAR(30)
, pv_telephone_type      CHAR(12)
, pv_country_code        CHAR(3)
, pv_area_code           CHAR(6)
, pv_telephone_number    CHAR(10)) MODIFIES SQL DATA
 
BEGIN
 
  /* Declare variables to manipulate auto generated sequence values. */
  DECLARE member_id            int unsigned;
  DECLARE contact_id           int unsigned;
  DECLARE address_id           int unsigned;
  DECLARE street_address_id    int unsigned;
  DECLARE telephone_id         int unsigned;
 
  /* Declare local constants for who-audit columns. */
  DECLARE lv_created_by        int unsigned DEFAULT 1001;
  DECLARE lv_creation_date     DATE         DEFAULT UTC_DATE();
  DECLARE lv_last_updated_by   int unsigned DEFAULT 1001;
  DECLARE lv_last_update_date  DATE         DEFAULT UTC_DATE();
 
  /* Declare a locally scoped variable. */
  DECLARE duplicate_key INT DEFAULT 0;
 
  /* Declare a duplicate key handler */
  DECLARE CONTINUE HANDLER FOR 1062 SET duplicate_key = 1;
 
  /* Start the transaction context. */
  START TRANSACTION;
 
  /* Create a SAVEPOINT as a recovery point. */
  SAVEPOINT all_or_none;
 
  /* Insert into the first table in sequence based on inheritance of primary keys by foreign keys. */
  INSERT INTO member
  ( member_type
  , account_number
  , credit_card_number
  , credit_card_type
  , created_by
  , creation_date
  , last_updated_by
  , last_update_date )
  VALUES
  ((SELECT   common_lookup_id
    FROM     common_lookup
    WHERE    common_lookup_context = 'MEMBER'
    AND      common_lookup_type = pv_member_type)
  , pv_account_number
  , pv_credit_card_number
  ,(SELECT   common_lookup_id
    FROM     common_lookup
    WHERE    common_lookup_context = 'MEMBER'
    AND      common_lookup_type = pv_credit_card_type)
  , lv_created_by
  , lv_creation_date
  , lv_last_updated_by
  , lv_last_update_date );
 
  /* Preserve the sequence by a table related variable name. */
  SET member_id = last_insert_id();
 
  /* Insert into the first table in sequence based on inheritance of primary keys by foreign keys. */
  INSERT INTO contact
  VALUES
  ( null
  , member_id
  ,(SELECT   common_lookup_id
    FROM     common_lookup
    WHERE    common_lookup_context = 'CONTACT'
    AND      common_lookup_type = pv_contact_type)
  , pv_first_name
  , pv_middle_name
  , pv_last_name
  , lv_created_by
  , lv_creation_date
  , lv_last_updated_by
  , lv_last_update_date );  
 
  /* Preserve the sequence by a table related variable name. */
  SET contact_id = last_insert_id();
 
  /* Insert into the first table in sequence based on inheritance of primary keys by foreign keys. */
  INSERT INTO address
  VALUES
  ( null
  , last_insert_id()
  ,(SELECT   common_lookup_id
    FROM     common_lookup
    WHERE    common_lookup_context = 'MULTIPLE'
    AND      common_lookup_type = pv_address_type)
  , pv_city
  , pv_state_province
  , pv_postal_code
  , lv_created_by
  , lv_creation_date
  , lv_last_updated_by
  , lv_last_update_date );  
 
  /* Preserve the sequence by a table related variable name. */
  SET address_id = last_insert_id();
 
  /* Insert into the first table in sequence based on inheritance of primary keys by foreign keys. */
  INSERT INTO street_address
  VALUES
  ( null
  , last_insert_id()
  , pv_street_address
  , lv_created_by
  , lv_creation_date
  , lv_last_updated_by
  , lv_last_update_date );  
 
  /* Insert into the first table in sequence based on inheritance of primary keys by foreign keys. */
  INSERT INTO telephone
  VALUES
  ( null
  , contact_id
  , address_id
  ,(SELECT   common_lookup_id
    FROM     common_lookup
    WHERE    common_lookup_context = 'MULTIPLE'
    AND      common_lookup_type = pv_telephone_type)
  , pv_country_code
  , pv_area_code
  , pv_telephone_number
  , lv_created_by
  , lv_creation_date
  , lv_last_updated_by
  , lv_last_update_date);
 
  /* This acts as an exception handling block. */  
  IF duplicate_key = 1 THEN
 
    /* This undoes all DML statements to this point in the procedure. */
    ROLLBACK TO SAVEPOINT all_or_none;
 
  END IF;
 
  /* This commits the write when successful and is harmless otherwise. */
  COMMIT;
 
END;
$$
 
-- Reset the standard delimiter to let the semicolon work as an execution command.
DELIMITER ;

You can then call the procedure, like:

SELECT 'CALL contact_insert() PROCEDURE 5 times' AS "Statement";
CALL contact_insert('INDIVIDUAL','R11-514-34','1111-1111-1111-1111','VISA_CARD','Goeffrey','Ward','Clinton','CUSTOMER','HOME','Provo','Utah','84606','118 South 9th East','HOME','011','801','423\-1234');
CALL contact_insert('INDIVIDUAL','R11-514-35','1111-2222-1111-1111','VISA_CARD','Wendy',null,'Moss','CUSTOMER','HOME','Provo','Utah','84606','1218 South 10th East','HOME','011','801','423-1234');
CALL contact_insert('INDIVIDUAL','R11-514-36','1111-1111-2222-1111','VISA_CARD','Simon','Jonah','Gretelz','CUSTOMER','HOME','Provo','Utah','84606','2118 South 7th East','HOME','011','801','423-1234');
CALL contact_insert('INDIVIDUAL','R11-514-37','1111-1111-1111-2222','MASTER_CARD','Elizabeth','Jane','Royal','CUSTOMER','HOME','Provo','Utah','84606','2228 South 14th East','HOME','011','801','423-1234');
CALL contact_insert('INDIVIDUAL','R11-514-38','1111-1111-3333-1111','VISA_CARD','Brian','Nathan','Smith','CUSTOMER','HOME','Spanish Fork','Utah','84606','333 North 2nd East','HOME','011','801','423-1234');

I hope this code complete approach helps those looking to learn how to write MySQL PSMs.

Written by maclochlainn

March 31st, 2022 at 1:40 am

Setting SQL_MODE

with one comment

In MySQL, the @@sql_mode parameter should generally use ONLY_FULL_GROUP_BY. If it doesn’t include it and you don’t have the ability to change the database parameters, you can use a MySQL PSM (Persistent Stored Module), like:

Create the set_full_group_by procedure:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
-- Drop procedure conditionally on whether it exists already.
DROP PROCEDURE IF EXISTS set_full_group_by;
 
-- Reset delimter to allow semicolons to terminate statements.
DELIMITER $$
 
-- Create a procedure to verify and set connection parameter.
CREATE PROCEDURE set_full_group_by()
  LANGUAGE SQL
  NOT DETERMINISTIC
  SQL SECURITY DEFINER
  COMMENT 'Set connection parameter when not set.'
BEGIN
 
  /* Check whether full group by is set in the connection and
     if unset, set it in the scope of the connection. */
  IF NOT EXISTS
    (SELECT NULL
     WHERE  REGEXP_LIKE(@@SQL_MODE,'ONLY_FULL_GROUP_BY'))
  THEN
    SET SQL_MODE=(SELECT CONCAT(@@sql_mode,',ONLY_FULL_GROUP_BY'));
  END IF;
END;
$$
 
-- Reset the default delimiter.
DELIMITER ;

Run the following SQL command before you attempt the exercises in the same session scope:

CALL set_full_group_by();

As always, I hope this helps those looking for a solution. Naturally, you can simply use the SET command on line #21 above.

Dynamic Drop Table

without comments

I always get interesting feedback on some posts. On my test case for discovering the STR_TO_DATE function’s behavior, the comment was tragically valid. I failed to cleanup after my test case. That was correct, and I should have dropped param table and the two procedures.

While appending the drop statements is the easiest, I thought it was an opportunity to have a bit of fun and write another procedure that will cleanup test case tables within the test_month_name procedure. Here’s sample dynamic drop_table procedure that you can use in other MySQL stored procedures:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
CREATE PROCEDURE drop_table
( table_name  VARCHAR(64))
BEGIN
 
  /* Declare a local variable for the SQL statement. */
  DECLARE stmt VARCHAR(1024);
 
  /* Set a session variable with two parameter markers. */
  SET @SQL := CONCAT('DROP TABLE ',table_name);
 
  /* Check if the constraint exists. */    
  IF EXISTS (SELECT NULL
             FROM   information_schema.tables t
             WHERE  t.table_schema = database()
             AND    t.table_name = table_name)
  THEN
 
    /* Dynamically allocated and run statement. */
    PREPARE stmt FROM @SQL;
    EXECUTE stmt;
    DEALLOCATE PREPARE stmt;
  END IF;
 
END;
$$

You can now put a call to the drop_table procedure in the test_month_name procedure from the earlier post. For convenience, here’s the modified test_month_name procedure with the call on line #33 right before you leave the loop and procedure:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
CREATE PROCEDURE test_month_name()
BEGIN
 
  /* Declare a handler variable. */
  DECLARE month_name  VARCHAR(9);
 
  /* Declare a handler variable. */
  DECLARE fetched  INT DEFAULT 0;
 
  /* Cursors must come after variables and before event handlers. */
  DECLARE month_cursor CURSOR FOR
    SELECT m.month_name
    FROM   month m;
 
  /* Declare a not found record handler to close a cursor loop. */
  DECLARE CONTINUE HANDLER FOR NOT FOUND SET fetched = 1;
 
  /* Open cursor and start simple loop. */
  OPEN month_cursor;
  cursor_loop:LOOP
 
    /* Fetch a record from the cursor. */
    FETCH month_cursor
    INTO  month_name;
 
    /* Place the catch handler for no more rows found
       immediately after the fetch operations. */
    IF fetched = 1 THEN 
      /* Fetch the partial strings that fail to find a month. */
      SELECT * FROM param;
 
      /* Conditionally drop the param table. */
      CALL drop_table('param');
 
      /* Leave the loop. */
      LEAVE cursor_loop;
    END IF;
 
    /* Call the subfunction because stored procedures do not
       support nested loops. */
    CALL read_string(month_name);
  END LOOP;
END;
$$

As always, I hope sample code examples help others solve problems.

Written by maclochlainn

February 12th, 2022 at 12:33 pm

Posted in MySQL,MySQL 8,sql

Tagged with ,

str_to_date Function

with 3 comments

As many know, I’ve adopted Learning SQL by Alan Beaulieu as a core reference for my database class. Chapter 7 in the book focuses on data generation, manipulation, and conversion.

The last exercise question in my check of whether they read the chapter and played with some of the discussed functions is:

  1. Use one or more temporal function to write a query that convert the ’29-FEB-2024′ string value into a default MySQL date format. The result should display:

    +--------------------+
    | mysql_default_date |
    +--------------------+
    | 2024-02-29         |
    +--------------------+
    1 row in set, 1 warning (0.00 sec)

If you’re not familiar with the behavior of MySQL functions, this could look like a difficult problem to solve. If you’re risk inclined you would probably try the STR_TO_DATE function but if you’re not risk inclined the description of the %m specifier might suggest you don’t have SQL builtin to solve the problem.

I use the problem to teach the students how to solve problems in SQL queries. The first step requires putting the base ’29-FEB-2024′ string value into a mystringstrings table, like:

DROP TABLE IF EXISTS strings;
CREATE TABLE strings
(mystring  VARCHAR(11));
 
SELECT 'Insert' AS statement;
INSERT INTO strings
(mystring)
VALUES
('29-FEB-2024');

The next step requires creating a query with:

  • A list of parameters in a Common Table Expression (CTE)
  • A CASE statement to filter results in the SELECT-list
  • A CROSS JOIN between the strings table and params CTE

The query would look like this resolves the comparison in the CASE statement through a case insensitive comparison:

SELECT 'Query' AS statement;
WITH params AS
(SELECT 'January' AS full_month
 UNION ALL
 SELECT 'February' AS full_month)
SELECT s.mystring
,      p.full_month
,      CASE
         WHEN SUBSTR(s.mystring,4,3) = SUBSTR(p.full_month,1,3) THEN
           STR_TO_DATE(REPLACE(s.mystring,SUBSTR(s.mystring,4,3),p.full_month),'%d-%M-%Y') 
       END AS converted_date
FROM   strings s CROSS JOIN params p;

and return:

+-------------+------------+----------------+
| mystring    | full_month | converted_date |
+-------------+------------+----------------+
| 29-FEB-2024 | January    | NULL           |
| 29-FEB-2024 | February   | 2024-02-29     |
+-------------+------------+----------------+
2 rows in set (0.00 sec)

The problem with the result set, or derived table, is the CROSS JOIN. A CROSS JOIN matches every row in one table with every row in another table or derived table from prior joins. That means you need to add a filter in the WHERE clause to ensure you only get matches between the strings and parameters, like the modified query:

WITH params AS 
(SELECT 'January' AS full_month 
 UNION ALL
 SELECT 'February' AS full_month)
SELECT s.mystring
,      p.full_month
,      CASE
         WHEN SUBSTR(s.mystring,4,3) = SUBSTR(p.full_month,1,3) THEN
           STR_TO_DATE(REPLACE(s.mystring,SUBSTR(s.mystring,4,3),p.full_month),'%d-%M-%Y') 
       END AS converted_date
FROM   strings s CROSS JOIN params p
WHERE  SUBSTR(s.mystring,4,3) = SUBSTR(p.full_month,1,3);

It returns a single row, like:

+-------------+------------+----------------+
| mystring    | full_month | converted_date |
+-------------+------------+----------------+
| 29-FEB-2024 | February   | 2024-02-29     |
+-------------+------------+----------------+
1 row in set (0.00 sec)

However, none of this is necessary because the query can be written like this:

SELECT STR_TO_DATE('29-FEB-2024','%d-%M-%Y') AS mysql_date;

It returns:

+------------+
| mysql_date |
+------------+
| 2024-02-29 |
+------------+
1 row in set (0.00 sec)

That’s because the STR_TO_DATE() function with the %M specifier resolves all months with three or more characters. Three characters are required because both Mar and May, and June and July can only be qualified by three characters. If you provide less than three characters of the month, the function returns a null value.

Here’s a complete test case that lets you discover all the null values that may occur with two few characters:

/* Conditionally drop the table. */
DROP TABLE IF EXISTS month, param;
 
/* Create a table. */
CREATE TABLE month
( month_name  VARCHAR(9));
 
/* Insert into the month table. */
INSERT INTO month
( month_name )
VALUES
 ('January')
,('February')
,('March')
,('April')
,('May')
,('June')
,('July')
,('August')
,('September')
,('October')
,('November')
,('December');
 
/* Create a table. */
CREATE TABLE param
( month   VARCHAR(9)
, needle  VARCHAR(9));
 
/* Conditionally drop the procedure. */
DROP PROCEDURE IF EXISTS read_string;
DROP PROCEDURE IF EXISTS test_month_name;
 
/* Reset the execution delimiter to create a stored program. */
DELIMITER $$
 
/* Create a procedure. */
CREATE PROCEDURE read_string(month_name  VARCHAR(9))
BEGIN
 
  /* Declare a handler variable. */
  DECLARE display     VARCHAR(17);
  DECLARE evaluate    VARCHAR(17);
  DECLARE iterator    INT DEFAULT 1;
  DECLARE partial     VARCHAR(9);
 
  /* Read the list of characters. */
  character_loop:LOOP
 
    /* Print the character list. */
    IF iterator > LENGTH(month_name) THEN
      LEAVE character_loop;
    END IF;
 
    /* Assign substring of month name. */
    SELECT SUBSTR(month_name,1,iterator) INTO partial;
    SELECT CONCAT('01-',partial,'-2024') INTO evaluate;
 
    /* Print only the strings too short to identify as the month. */
    IF STR_TO_DATE(evaluate,'%d-%M-%Y') IS NULL THEN
      INSERT INTO param
      ( month, needle )
      VALUES
      ( month_name, partial );
    END IF;
 
    /* Increment the counter. */
    SET iterator = iterator + 1;
 
  END LOOP;
END;
$$
 
/* Create a procedure. */
CREATE PROCEDURE test_month_name()
BEGIN
 
  /* Declare a handler variable. */
  DECLARE month_name  VARCHAR(9);
 
  /* Declare a handler variable. */
  DECLARE fetched  INT DEFAULT 0;
 
  /* Cursors must come after variables and before event handlers. */
  DECLARE month_cursor CURSOR FOR
    SELECT m.month_name
    FROM   month m;
 
  /* Declare a not found record handler to close a cursor loop. */
  DECLARE CONTINUE HANDLER FOR NOT FOUND SET fetched = 1;
 
  /* Open cursor and start simple loop. */
  OPEN month_cursor;
  cursor_loop:LOOP
 
    /* Fetch a record from the cursor. */
    FETCH month_cursor
    INTO  month_name;
 
    /* Place the catch handler for no more rows found
       immediately after the fetch operations. */
    IF fetched = 1 THEN 
      /* Fetch the partial strings that fail to find a month. */
      SELECT * FROM param;
 
      /* Leave the loop. */
      LEAVE cursor_loop;
    END IF;
 
    /* Call the subfunction because stored procedures do not
       support nested loops. */
    CALL read_string(month_name);
  END LOOP;
END;
$$
 
/* Reset the delimter. */
DELIMITER ;
 
CALL test_month_name();

It returns the list of character fragments that fail to resolve English months:

+---------+--------+
| month   | needle |
+---------+--------+
| January | J      |
| March   | M      |
| March   | Ma     |
| April   | A      |
| May     | M      |
| May     | Ma     |
| June    | J      |
| June    | Ju     |
| July    | J      |
| July    | Ju     |
| August  | A      |
+---------+--------+
11 rows in set (0.02 sec)

There are two procedures because MySQL doesn’t support nested loops and uses a single-pass parser. So, the first read_string procedure is the inner loop and the second test_month_name procedure is the outer loop.

I wrote a follow-up to this post because of a reader’s question about not cleaning up the test case. In the other post, you will find a drop_table procedure that lets you dynamically drop the param table created to store the inner loop procedure’s results.

As always, I hope this helps those looking to open the hood and check the engine.

Written by maclochlainn

February 11th, 2022 at 1:13 am

Posted in MySQL,MySQL 8,sql

Tagged with ,

Case Sensitive Comparison

without comments

Sometimes you hear from some new developers that MySQL only makes case insensitive string comparisons. One of my students showed me their test case that they felt proved it:

SELECT STRCMP('a','A') WHERE 'a' = 'A';

Naturally, it returns 0, which means:

  • The values compared by the STRCMP() function makes a case insensitive comparison, and
  • The WHERE clause also compares strings case insensitively.

As a teacher, you’re gratified that the student took the time to build their own use cases. However, in this case I had to explain that while he was right about the STRCMP() function and the case insensitive comparison the student used in the WHERE clause was a choice, it wasn’t the only option. The student was wrong to conclude that MySQL couldn’t make case sensitive string comparisons.

I modified his sample by adding the required BINARY keyword for a case sensitive comparison in the WHERE clause:

SELECT STRCMP('a','A') WHERE BINARY 'a' = 'A';

It returns an empty set, which means the binary comparison in the WHERE clause is a case sensitive comparison. Then, I explained while the STRCMP() function performs a case insensitive match, the REPLACE() function performs a case sensitive one. Then, I gave him the following expanded use case for the two functions:

SELECT STRCMP('a','A')      AS test1
,      REPLACE('a','A','b') AS test2
,      REPLACE('a','a','b') AS test3;

It returns:

+-------+-------+-------+
| test1 | test2 | test3 |
+-------+-------+-------+
|     0 | a     | b     |
+-------+-------+-------+
1 row in set (0.00 sec)

The behavior of one function may be different than another as to how it compares strings, and its the developers responsibility to make sure they understand its behavior thoroughly before they use it. The binary comparison was a win for the student since they were building a website that needed that behavior from MySQL.

As always, I hope tidbits like this save folks time using MySQL.

Written by maclochlainn

February 10th, 2022 at 3:05 pm

Posted in MySQL,MySQL 8,sql

Tagged with ,

Read CSV with Python

without comments

In 2009, I showed an example of how to use the MySQL LOAD DATA INFILE command. Last year, I updated the details to reset the secure_file-priv privilege to use the LOAD DATA INFILE command, but you can avoid that approach with a simple Python 3 program like the one in this example. You also can use MySQL Shell’s new parallel table import feature, introduced in 8.0.17, as noted in a comment on this blog post.

The example requires creating an avenger table, avenger.csv file, a readWriteData.py Python script, run the readWriteData.py Python script, and a query that validates the insertion of the avenger.csv file’s data into the avenger table. The complete code in five steps using the sakila demonstration database:

  • Creating the avenger table with the create_avenger.sql script:

    -- Conditionally drop the avenger table.
    DROP TABLE IF EXISTS avenger;
     
    -- Create the avenger table.
    CREATE TABLE avenger
    ( avenger_id    int unsigned PRIMARY KEY AUTO_INCREMENT
    , first_name    varchar(20)
    , last_name     varchar(20)
    , avenger_name  varchar(20))
      ENGINE=InnoDB
      AUTO_INCREMENT=1001
      DEFAULT CHARSET=utf8mb4
      COLLATE=utf8mb4_0900_ai_ci;
  • Create the avenger.csv file with the following data:

    Anthony,Stark,Iron Man
    Thor,Odinson,God of Thunder
    Steven,Rogers,Captain America
    Bruce,Banner,Hulk
    Clinton,Barton,Hawkeye
    Natasha,Romanoff,Black Widow
    Peter,Parker,Spiderman
    Steven,Strange,Dr. Strange
    Scott,Lange,Ant-man
    Hope,van Dyne,Wasp
  • Create the readWriteFile.py Python 3 script:

    # Import libraries.
    import csv
    import mysql.connector
    from mysql.connector import errorcode
    from csv import reader
     
    #  Attempt the statement.
    # ============================================================
    #  Use a try-catch block to manage the connection.
    # ============================================================
    try:
      # Open connection.
      cnx = mysql.connector.connect( user='student'
                                   , password='student'
                                   , host='127.0.0.1'
                                   , database='sakila')
      # Create cursor.
      cursor = cnx.cursor()
     
      # Open file in read mode and pass the file object to reader.
      with open('avenger.csv', 'r') as read_obj:
        csv_reader = reader(read_obj)
     
        # Declare the dynamic statement.
        stmt = ("INSERT INTO avenger "
                "(first_name, last_name, avenger_name) "
                "VALUES "
                "(%s, %s, %s)")
     
        # Iterate over each row in the csv using reader object
        for row in csv_reader:
          cursor.execute(stmt, row)
     
        # Commit the writes.
        cnx.commit()
     
        #close the connection to the database.
        cursor.close()
     
    # Handle exception and close connection.
    except mysql.connector.Error as e:
      if e.errno == errorcode.ER_ACCESS_DENIED_ERROR:
        print("Something is wrong with your user name or password")
      elif e.errno == errorcode.ER_BAD_DB_ERROR:
        print("Database does not exist")
      else:
        print("Error code:", e.errno)        # error number
        print("SQLSTATE value:", e.sqlstate) # SQLSTATE value
        print("Error message:", e.msg)       # error message
     
    # Close the connection when the try block completes.
    else:
      cnx.close()
  • Run the readWriteFile.py file:

    python3 readWriteFile.py
  • Query the avenger table:

    SELECT * FROM avenger;

    It returns:

    +------------+------------+-----------+-----------------+
    | avenger_id | first_name | last_name | avenger_name    |
    +------------+------------+-----------+-----------------+
    |       1001 | Anthony    | Stark     | Iron Man        |
    |       1002 | Thor       | Odinson   | God of Thunder  |
    |       1003 | Steven     | Rogers    | Captain America |
    |       1004 | Bruce      | Banner    | Hulk            |
    |       1005 | Clinton    | Barton    | Hawkeye         |
    |       1006 | Natasha    | Romanoff  | Black Widow     |
    |       1007 | Peter      | Parker    | Spiderman       |
    |       1008 | Steven     | Strange   | Dr. Strange     |
    |       1009 | Scott      | Lange     | Ant-man         |
    |       1010 | Hope       | van Dyne  | Wasp            |
    +------------+------------+-----------+-----------------+
    10 rows in set (0.00 sec)

Written by maclochlainn

December 12th, 2021 at 12:17 am

MySQL Query Performance

without comments

Working through our chapter on MySQL views, I wrote the query two ways to introduce the idea of SQL tuning. That’s one of the final topics before introducing JSON types.

I gave the students this query based on the Sakila sample database after explaining how to use the EXPLAIN syntax. The query only uses only inner joins, which are generally faster and more efficient than subqueries as a rule of thumb than correlated subqueries.

SELECT   ctry.country AS country_name
,        SUM(p.amount) AS tot_payments
FROM     city c INNER JOIN address a
ON       c.city_id = a.city_id INNER JOIN customer cus
ON       a.address_id = cus.address_id INNER JOIN payment p
ON       cus.customer_id = p.customer_id INNER JOIN country ctry
ON       c.country_id = ctry.country_id
GROUP BY ctry.country;

It generated the following tabular explain plan output:

+----+-------------+-------+------------+--------+---------------------------+--------------------+---------+------------------------+------+----------+------------------------------+
| id | select_type | table | partitions | type   | possible_keys             | key                | key_len | ref                    | rows | filtered | Extra                        |
+----+-------------+-------+------------+--------+---------------------------+--------------------+---------+------------------------+------+----------+------------------------------+
|  1 | SIMPLE      | cus   | NULL       | index  | PRIMARY,idx_fk_address_id | idx_fk_address_id  | 2       | NULL                   |  599 |   100.00 | Using index; Using temporary |
|  1 | SIMPLE      | a     | NULL       | eq_ref | PRIMARY,idx_fk_city_id    | PRIMARY            | 2       | sakila.cus.address_id  |    1 |   100.00 | NULL                         |
|  1 | SIMPLE      | c     | NULL       | eq_ref | PRIMARY,idx_fk_country_id | PRIMARY            | 2       | sakila.a.city_id       |    1 |   100.00 | NULL                         |
|  1 | SIMPLE      | ctry  | NULL       | eq_ref | PRIMARY                   | PRIMARY            | 2       | sakila.c.country_id    |    1 |   100.00 | NULL                         |
|  1 | SIMPLE      | p     | NULL       | ref    | idx_fk_customer_id        | idx_fk_customer_id | 2       | sakila.cus.customer_id |   26 |   100.00 | NULL                         |
+----+-------------+-------+------------+--------+---------------------------+--------------------+---------+------------------------+------+----------+------------------------------+
5 rows in set, 1 warning (0.02 sec)

Then, I used MySQL Workbench to generate the following visual explain plan:

Then, I compared it against a refactored version of the query that uses a correlated subquery in the SELECT-list. The example comes form Appendix B in Learning SQL, 3rd Edition by Alan Beaulieu.

SELECT ctry.country
,      (SELECT   SUM(p.amount)
        FROM     city c INNER JOIN address a
        ON       c.city_id = a.city_id INNER JOIN customer cus
        ON       a.address_id = cus.address_id INNER JOIN payment p
        ON       cus.customer_id = p.customer_id
        WHERE    c.country_id = ctry.country_id) AS tot_payments
FROM   country ctry;

It generated the following tabular explain plan output:

+----+--------------------+-------+------------+------+---------------------------+--------------------+---------+------------------------+------+----------+-------------+
| id | select_type        | table | partitions | type | possible_keys             | key                | key_len | ref                    | rows | filtered | Extra       |
+----+--------------------+-------+------------+------+---------------------------+--------------------+---------+------------------------+------+----------+-------------+
|  1 | PRIMARY            | ctry  | NULL       | ALL  | NULL                      | NULL               | NULL    | NULL                   |  109 |   100.00 | NULL        |
|  2 | DEPENDENT SUBQUERY | c     | NULL       | ref  | PRIMARY,idx_fk_country_id | idx_fk_country_id  | 2       | sakila.ctry.country_id |    5 |   100.00 | Using index |
|  2 | DEPENDENT SUBQUERY | a     | NULL       | ref  | PRIMARY,idx_fk_city_id    | idx_fk_city_id     | 2       | sakila.c.city_id       |    1 |   100.00 | Using index |
|  2 | DEPENDENT SUBQUERY | cus   | NULL       | ref  | PRIMARY,idx_fk_address_id | idx_fk_address_id  | 2       | sakila.a.address_id    |    1 |   100.00 | Using index |
|  2 | DEPENDENT SUBQUERY | p     | NULL       | ref  | idx_fk_customer_id        | idx_fk_customer_id | 2       | sakila.cus.customer_id |   26 |   100.00 | NULL        |
+----+--------------------+-------+------------+------+---------------------------+--------------------+---------+------------------------+------+----------+-------------+
5 rows in set, 2 warnings (0.00 sec)

and, MySQL Workbench generated the following visual explain plan:

The tabular explain plan identifies the better performing query to an experienced eye but the visual explain plan works better for those new to SQL tuning.

The second query performs best because it reads the least data by leveraging the indexes best. As always, I hope these examples help those looking at learning more about MySQL.

Written by maclochlainn

December 9th, 2021 at 1:01 am

MySQL DropIndexIfExists

without comments

In reply to a question about how to conditionally drop an index on a table in MySQL. It appears the syntax doesn’t exist. However, maybe it does and I missed it. If I did miss it, I’m sure somebody will let me know. However, I simply have a dropIndexIfExists stored procedure for this type of database maintenance.

Below is my dropIndexIfExists stored procedure:

-- Conditionally drop the procedure.
DROP PROCEDURE IF EXISTS dropIndexIfExists;
 
-- Change the default semicolon delimiter to write a PSM
-- (Persistent Stored Module) or stored procedure.
DELIMITER $$
 
-- Create the procedure.
CREATE PROCEDURE dropIndexIfExists
( pv_table_name  VARCHAR(64)
, pv_index_name  VARCHAR(64))
BEGIN
 
  /* Declare a local variable for the SQL statement. */
  DECLARE stmt VARCHAR(1024);
 
  /* Set a session variable with two parameter markers. */
  SET @SQL := CONCAT('ALTER TABLE ',pv_table_name,'DROP INDEX ',pv_index_name);
 
  /* Check if the constraint exists. */
  IF EXISTS (SELECT NULL
             FROM   information_schema.statistics s
             WHERE  s.index_schema = database()
             AND    s.table_name = pv_table_name
             AND    s.index_name = pv_index_name)
  THEN
 
    /* Dynamically allocated and run statement. */
    PREPARE stmt FROM @SQL;
    EXECUTE stmt;
    DEALLOCATE PREPARE stmt;
  END IF;
 
END;
$$
 
-- Reset the default semicolon delimiter.
DELIMITER ;

You call the procedure like:

CALL dropIndexIfExists('payment','idx_payment01');

As always, I hope this helps those looking for a solution.

Written by maclochlainn

December 1st, 2021 at 12:09 am

MySQL WITH Clause

without comments

When I went over my example of using the WITH clause to solve how to use a series of literal values in data sets, some students got it right away and some didn’t. The original post showed how to solve a problem where one value in the data set is returned in the SELECT-list and two values are used as the minimum and maximum values with a BETWEEN operator. It used three approaches with literal values:

  • A list of Python dictionaries that require you to filter the return set from the database through a range loop and if statement that mimics a SQL BETWEEN operator.
  • A WITH clause that accepts the literals as bind variables to filter the query results inside the query.
  • A table design that holds the literals values that an analyst might use for reporting.

It was the last example that required elaboration. I explained you might build a web form that uses a table, and the table could allow a data analyst to enter parameter sets. That way the analyst could submit a flag value to use one or another set of values. I threw out the idea on the whiteboard of introducing a report column to the prior post’s level table. The student went off to try it.

Two problems occurred. The first was in the design of the new table and the second was how to properly use the MySQL Python driver.

Below is a formal table design that supports this extension of the first blog post as a list of parameter values. It uses a report column as a super key to return a set of possible values. One value will show in the SELECT-list and the other two values deploy as the minimum and maximum values in a BETWEEN operator. It is seeded with two sets of values. One of the report possibilities is Summary level with three possibilities and the other is the Detail level with five possibilities.

-- Conditionally drop the levels table.
DROP TABLE IF EXISTS levels;
 
-- Create the levels list.
CREATE TABLE levels
( level      VARCHAR(16)
, report     ENUM('Summary','Detail')
, min_roles  INT
, max_roles  INT );
 
-- Insert values into the list table.
INSERT INTO levels
( level, report, min_roles, max_roles )
VALUES
 ('Hollywood Star','Summary', 30, 99999)
,('Prolific Actor','Summary', 20, 29)
,('Newcommer','Summary', 1, 19)
,('Hollywood Star','Detail', 30, 99999)
,('Prolific Actor','Detail', 20, 29)
,('Regular Actor','Detail', 10, 19)
,('Actor','Detail', 5, 9)
,('Newcommer','Detail', 1, 4);

The foregoing table design uses an ENUM type because reporting parameter sets are typically fewer than 64 possibilities. If you use the table to support multiple reports, you should add a second super key column like report_type. The report_type column key would let you use the table to support a series of different report parameter lists.

While the student used a %s inside the query, they created a runtime error when trying to pass the single bind variable into the query. The student misunderstood how to convert a report column input parameter variable into a tuple, which shows up when the student calls the Python MySQL Driver, like this:

59
cursor.execute(query, (report))

The student’s code generated the following error stack:

Traceback (most recent call last):
  File "./python-with-clause.py", line 59, in <module>
    cursor.execute(query,(report))
  File "/usr/lib/python3.7/site-packages/mysql/connector/cursor_cext.py", line 248, in execute
    prepared = self._cnx.prepare_for_mysql(params)
  File "/usr/lib/python3.7/site-packages/mysql/connector/connection_cext.py", line 632, in prepare_for_mysql
    raise ValueError("Could not process parameters")
ValueError: Could not process parameters

The ValueError should indicate to the developer that they’ve used a wrong data type in the call to the method:

cursor.execute(<class 'str'>,<class 'tuple'>)

This clearly was a misunderstanding of how to cast a single string to a tuple. A quick explanation of how Python casts a single string into a tuple can best be illustrated inside an interactive Python shell, like:

>>> # Define a variable.
>>> x = 'Detail'
>>> # An incorrect attempt to make a string a tuple.
>>> y = (x)
>>> # Check type of y after assignment.
>>> print(type(y))
<class 'str'>
>>> # A correct attempt to make a string a tuple.
>>> y = tuple(x)
>>> # Check type of y after assignment.
>>> print(type(y))
<class 'tuple'>
>>> # An alternative to make a string a tuple.
>>> z = (x,)
>>> # Check type of z after assignment.
>>> print(type(z))
<class 'tuple'>

So, the fix was quite simple to line 59:

59
cursor.execute(query, (report,))

The student started with a copy of a Python program that I provided. I fixed the argument handling and added some comments. The line 59 reference above maps to this code example.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Import the library.
import sys
import mysql.connector
from mysql.connector import errorcode
 
# Capture argument list.
fullCmdArguments = sys.argv
 
# Assign argument list to variable.
argumentList = fullCmdArguments[1:]
 
# Define a standard report variable.
report = "Summary"
 
#  Check and process argument list.
# ============================================================
#  If there are less than two arguments provide default values.
#  Else enumerate and convert strings to dates.
# ============================================================
if (len(argumentList) == 1):
  # Set a default start date.
  if (isinstance(report,str)):
    report = argumentList[0]
 
#  Attempt the query.
# ============================================================
#  Use a try-catch block to manage the connection.
# ============================================================
try:
  # Open connection.
  cnx = mysql.connector.connect(user='student', password='student',
                                host='127.0.0.1',
                                database='sakila')
  # Create cursor.
  cursor = cnx.cursor()
 
  # Set the query statement.
  query = ("WITH actors AS "
           "(SELECT   a.actor_id "
           " ,        a.first_name "
           " ,        a.last_name "
           " ,        COUNT(fa.actor_id) AS num_roles "
           " FROM     actor a INNER JOIN film_actor fa "
           " ON       a.actor_id = fa.actor_id "
           " GROUP BY a.actor_id "
           " ,        a.first_name "
           " ,        a.last_name ) "
           " SELECT   a.first_name "
           " ,        a.last_name "
           " ,        l.level "
           " ,        a.num_roles "
           " FROM     actors a CROSS JOIN levels l "
           " WHERE    a.num_roles BETWEEN l.min_roles AND l.max_roles "
           " AND      l.report = %s "
           " ORDER BY a.last_name "
           " ,        a.first_name")
 
  # Execute cursor.
  cursor.execute(query,(report,))
 
  # Display the rows returned by the query.
  for (first_name, last_name, level, num_roles) in cursor:
    print('{0} {1} is a {2} with {3} films.'.format( first_name.title()
                                                   , last_name.title()
                                                   , level.title()
                                                   , num_roles))
 
  # Close cursor.
  cursor.close()
 
# ------------------------------------------------------------
# Handle exception and close connection.
except mysql.connector.Error as e:
  if e.errno == errorcode.ER_ACCESS_DENIED_ERROR:
    print("Something is wrong with your user name or password")
  elif e.errno == errorcode.ER_BAD_DB_ERROR:
    print("Database does not exist")
  else:
    print("Error code:", e.errno)        # error number
    print("SQLSTATE value:", e.sqlstate) # SQLSTATE value
    print("Error message:", e.msg)       # error message
 
# Close the connection when the try block completes.
else:
  cnx.close()

A Linux shell program like the following (provided the name of the shell script and Python program are the same) can run the Python program with or without a parameter. It works without a parameter because it sets a default value for the report variable.

# Switch the file extension and run the python program.
file=${0/%sh/py}
python3 ${file} "${@}"

You call the shell script like this:

./python-with-clause.sh Detail

As always, I hope this helps those looking for a solution.

Written by maclochlainn

November 14th, 2021 at 11:01 pm

MySQL with CTEs

without comments

As an example for my class on the usefulness of Common Table Expressions (CTEs), I created three examples with Python. They extend an exercise in Chapter 9 on subqueries from Learning SQL by Alan Beaulieu. All of the examples work with the sakila sample database.

These bullets describe the examples:

  1. Uses local variables and a range for loop and if statement that uses the variables to evaluate and add an element to the derived table (or query result set) from MySQL.
  2. Uses a CTE with substitution variables from the Python program, which eliminates the need to evaluate and add an element to the query result set because the query does that.
  3. Uses a table to hold the variables necessary to evaluate and add the element to the query result set.
  4. This is the first Python program:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    
    # Import the library.
    import sys
    import mysql.connector
    from mysql.connector import errorcode
     
    # Declare a list of tuples.
    dict = [{'level':'Hollywood Star','min_roles':30,'max_roles':99999}
           ,{'level':'Prolific Actor','min_roles':20,'max_roles':29}
           ,{'level':'Newcomer','min_roles':1,'max_roles':19}]
     
    #  Attempt the query.
    # ============================================================
    #  Use a try-catch block to manage the connection.
    # ============================================================
    try:
      # Open connection.
      cnx = mysql.connector.connect(user='student', password='student',
                                    host='127.0.0.1',
                                    database='sakila')
      # Create cursor.
      cursor = cnx.cursor()
     
      # Set the query statement.
      query = ("SELECT   a.actor_id "
               ",        a.first_name       "
               ",        a.last_name "
               ",        COUNT(fa.actor_id) AS films "
               "FROM     actor a INNER JOIN film_actor fa "
               "ON       a.actor_id = fa.actor_id "
               "GROUP BY a.actor_id "
               ",        a.first_name "
               ",        a.last_name "
               "ORDER BY a.last_name "
               ",        a.first_name")
     
      # Execute cursor.
      cursor.execute(query)
     
      # Display the rows returned by the query.
      for (actor_id, first_name, last_name, films) in cursor:
        for i in range(len(dict)):
          if films >= dict[i]["min_roles"] and films <= dict[i]["max_roles"]:
            print('{0} {1} is a {2} with {3} films.'.format( first_name.title()
                                                           , last_name.title()
                                                           , dict[i]["level"]
                                                           , films))
     
      # Close cursor.
      cursor.close()
     
    # ------------------------------------------------------------
    # Handle exception and close connection.
    except mysql.connector.Error as e:
      if e.errno == errorcode.ER_ACCESS_DENIED_ERROR:
        print("Something is wrong with your user name or password")
      elif e.errno == errorcode.ER_BAD_DB_ERROR:
        print("Database does not exist")
      else:
        print("Error code:", e.errno)        # error number
        print("SQLSTATE value:", e.sqlstate) # SQLSTATE value
        print("Error message:", e.msg)       # error message
     
    # Close the connection when the try block completes.
    else:
      cnx.close()

    The Python dictionary on lines 7 thru 9 and range for loop and if statement on lines 41 and 42 can be eliminated by putting the literal values in a Common Table Expression (CTE). That’s because a CROSS JOIN matches all rows in the CTE against the base table before filtering them.

    The match of all rows in the CTE against the base table effectively replaces the range for loop in the original code. The WHERE clause replaces the if statement in the original code.

    Another optimization for readability of the final query puts the grouped query into a CTE as well. That way the final query simply demonstrates the filtering process.

    This is the second Python program, and it converts the Python dictionary to a list of lists and assigns the lists to param tuple:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    
    # Import the library.
    import sys
    import mysql.connector
    from mysql.connector import errorcode
     
    # Declare a list of lists.
    list = [['Hollywood Star',30,99999]
           ,['Prolific Actor',20,29]
           ,['Newcomer',1,19]]
     
    # Declare a tuple of the set of lists.
    param = (list[0] + list[1] + list[2])
     
    #  Attempt the query.
    # ============================================================
    #  Use a try-catch block to manage the connection.
    # ============================================================
    try:
      # Open connection.
      cnx = mysql.connector.connect(user='student', password='student',
                                    host='127.0.0.1',
                                    database='sakila')
      # Create cursor.
      cursor = cnx.cursor()
     
      # Set the query statement.
      query = ("WITH actors AS "
               "(SELECT   a.actor_id "
               " ,        a.first_name "
               " ,        a.last_name "
               " ,        COUNT(fa.actor_id) AS num_roles "
               " FROM     actor a INNER JOIN film_actor fa "
               " ON       a.actor_id = fa.actor_id "
               " GROUP BY a.actor_id "
               " ,        a.first_name "
               " ,        a.last_name ) "
               " , levels AS "
               "(SELECT  %s AS level "
               " ,       %s AS min_roles "
               " ,       %s AS max_roles "
               " UNION ALL "
               " SELECT  %s AS level "
               " ,       %s AS min_roles "
               " ,       %s AS max_roles "
               " UNION ALL "
               " SELECT  %s AS level "
               " ,       %s AS min_roles "
               " ,       %s AS max_roles) "
               " SELECT a.first_name "
               " ,      a.last_name "
               " ,      l.level "
               " ,      a.num_roles "
               " FROM   actors a CROSS JOIN levels l "
               " WHERE  a.num_roles BETWEEN l.min_roles AND l.max_roles "
               " ORDER BY a.last_name "
               " ,        a.first_name")
     
      # Execute cursor.
      cursor.execute(query, param)
     
      # Display the rows returned by the query.
      for (first_name, last_name, level, num_roles) in cursor:
        print('{0} {1} is a {2} with {3} films.'.format( first_name.title()
                                                       , last_name.title()
                                                       , level.title()
                                                       , num_roles))
     
      # Close cursor.
      cursor.close()
     
    # ------------------------------------------------------------
    # Handle exception and close connection.
    except mysql.connector.Error as e:
      if e.errno == errorcode.ER_ACCESS_DENIED_ERROR:
        print("Something is wrong with your user name or password")
      elif e.errno == errorcode.ER_BAD_DB_ERROR:
        print("Database does not exist")
      else:
        print("Error code:", e.errno)        # error number
        print("SQLSTATE value:", e.sqlstate) # SQLSTATE value
        print("Error message:", e.msg)       # error message
     
    # Close the connection when the try block completes.
    else:
      cnx.close()

    This is the third Python program requires some SQL setup. You should run this script inside the sakila database first. It basically takes the variables out of the code and stores them in a table. This is more likely what you would do to ensure maintainability of ever changing range values like these if you built a solution like this in a real application. It leaves the aggregation process inside a CTE and simplifies the final query.

    -- Conditionally drop the levels table.
    DROP TABLE IF EXISTS levels;
     
    -- Create the levels list.
    CREATE TABLE levels
    ( level      VARCHAR(16)
    , min_roles  INT
    , max_roles  INT );
     
    -- Insert values into the list table.
    INSERT INTO levels
    ( level, min_roles, max_roles )
    VALUES
     ('Hollywood Star', 30, 99999)
    ,('Prolific Actor', 20, 29)
    ,('Newcommer',1,19);

    After seeding the data in the levels table, you can test the query natively in MySQL, like this:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    
    -- Query the data.
    WITH actors AS
     (SELECT   a.actor_id
      ,        a.first_name
      ,        a.last_name
      ,        COUNT(*) AS num_roles
      FROM     actor a INNER JOIN film_actor fa
      ON       a.actor_id = fa.actor_id
      GROUP BY actor_id)
    SELECT   a.first_name
    ,        a.last_name
    ,        l.level
    ,        a.num_roles
    FROM     actors a CROSS JOIN levels l
    WHERE    a.num_roles BETWEEN l.min_roles AND l.max_roles
    ORDER BY a.last_name
    ,        a.first_name;

    There’s also a syntax that makes this type of query appear to be an INNER JOIN when it’s actually a filtered CROSS JOIN. If you adopt that syntax, you would rewrite lines 14 and 15:

    14
    15
    
    FROM   actors a INNER JOIN levels l
    WHERE  a.num_roles BETWEEN l.min_roles AND l.max_roles;

    Then, you can run this version without the second CTE element:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    
    # Import the library.
    import sys
    import mysql.connector
    from mysql.connector import errorcode
     
    #  Attempt the query.
    # ============================================================
    #  Use a try-catch block to manage the connection.
    # ============================================================
    try:
      # Open connection.
      cnx = mysql.connector.connect(user='student', password='student',
                                    host='127.0.0.1',
                                    database='sakila')
      # Create cursor.
      cursor = cnx.cursor()
     
      # Set the query statement.
      query = ("WITH actors AS "
               "(SELECT   a.actor_id "
               " ,        a.first_name "
               " ,        a.last_name "
               " ,        COUNT(fa.actor_id) AS num_roles "
               " FROM     actor a INNER JOIN film_actor fa "
               " ON       a.actor_id = fa.actor_id "
               " GROUP BY a.actor_id "
               " ,        a.first_name "
               " ,        a.last_name ) "
               " SELECT   a.first_name "
               " ,        a.last_name "
               " ,        l.level "
               " ,        a.num_roles "
               " FROM     actors a CROSS JOIN levels l "
               " WHERE    a.num_roles BETWEEN l.min_roles AND l.max_roles "
               " ORDER BY a.last_name "
               " ,        a.first_name")
     
      # Execute cursor.
      cursor.execute(query)
     
      # Display the rows returned by the query.
      for (first_name, last_name, level, num_roles) in cursor:
        print('{0} {1} is a {2} with {3} films.'.format( first_name.title()
                                                       , last_name.title()
                                                       , level.title()
                                                       , num_roles))
     
      # Close cursor.
      cursor.close()
     
    # ------------------------------------------------------------
    # Handle exception and close connection.
    except mysql.connector.Error as e:
      if e.errno == errorcode.ER_ACCESS_DENIED_ERROR:
        print("Something is wrong with your user name or password")
      elif e.errno == errorcode.ER_BAD_DB_ERROR:
        print("Database does not exist")
      else:
        print("Error code:", e.errno)        # error number
        print("SQLSTATE value:", e.sqlstate) # SQLSTATE value
        print("Error message:", e.msg)       # error message
     
    # Close the connection when the try block completes.
    else:
      cnx.close()

    As always, I hope this helps those trying to understand how CTEs can solve problems that would otherwise be coded in external imperative languages like Python.

Written by maclochlainn

November 3rd, 2021 at 10:01 am